
Morphing-based Compression for Data-centric ML Pipelines
Sebastian Baunsgaard

Technische Universität Berlin & BIFOLD
baunsgaard@tu-berlin.de

Matthias Boehm
Technische Universität Berlin & BIFOLD

matthias.boehm@tu-berlin.de

ABSTRACT
Data-centric ML pipelines extend traditional machine learning (ML)
pipelines—of feature transformations and ML model training—by
outer loops for data cleaning, augmentation, and feature engi-
neering to create high-quality input data. Existing lossless matrix
compression applies lightweight compression schemes to numeric
matrices and performs linear algebra operations such as matrix-
vector multiplications directly on the compressed representation
but struggles to efficiently rediscover structural data redundancy.
Compressed operations are effective at fitting data in available
memory, reducing I/O across the storage-memory-cache hierarchy,
and improving instruction parallelism. The applied data cleaning,
augmentation, and feature transformations provide a rich source
of information about data characteristics such as distinct items,
column sparsity, and column correlations. In this paper, we intro-
duce BWARE—an extension of AWARE for workload-aware loss-
less matrix compression—that pushes compression through feature
transformations and engineering to leverage information about
structural transformations. Besides compressed feature transforma-
tions, we introduce a novel technique for lightweight morphing of
a compressed representation into workload-optimized compressed
representations without decompression. BWARE shows substantial
end-to-end runtime improvements, reducing the execution time for
training data-centric ML pipelines from days to hours.

PVLDB Reference Format:
Sebastian Baunsgaard and Matthias Boehm. Morphing-based Compression
for Data-centric ML Pipelines. PVLDB, 14(1): XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
www.github.com/damslab/reproducibility/tree/master/vldb2026-BWARE.

1 INTRODUCTION
Modern machine learning (ML) training comprises more than just
selecting and fitting ML algorithms or neural networks and their
hyper-parameters. Data-centric ML pipelines extend traditional
ML pipelines of feature transformations and model training by
pre-processing steps for data validation [40, 94], data cleaning [98],
feature engineering [93], and data augmentation [60, 89, 90, 111]
to construct high-quality datasets with good coverage of the target
domain. These pre-processing techniques can substantially improve
model accuracy [60, 98], fairness [93, 102], and robustness [107].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Disk

Matrix

Frame
Transform

CMatrix
while(){
q=X@p

}

Algorithm

C

Workload
AWARE

CTransform

BWARE

CFrame

C Disk

Morph

Figure 1: BWARE Framework Overview and Contributions.

Sources of Redundancy: The iterative nature of finding good
data-centric ML pipelines causes both operational redundancy (e.g.,
fully or partially repeated pre-processing steps) [85] as well as
data redundancy [13]. Besides natural data redundancy, such as the
small cardinality of categorical features and column correlations
[35], data-centric ML pipelines create additional redundancy. Exam-
ples are the augmentation of data points or features (correlation), as
well as systematic transformations such as the imputation of miss-
ing values by mean/mode (default values) or MICE [109] (correla-
tion), outlier removal (sparsity/default values), and data cleaning by
robust functional dependencies [33] (correlation). While being ben-
eficial for model quality, the iterative selection of such data-centric
ML pipelines is a very expensive process. Eliminating unnecessary
redundancy through data reorganization is appealing because it
can speed up pre-processing and repeated model training, while
reorganization overheads can be amortized.

Lossless Matrix Compression: A common approach for ex-
ploiting data redundancy without quality degradation is lossless
compression. First, sparsity exploitation avoids processing zero val-
ues via dedicated data layouts, sparse operators, and even sparsity-
exploiting ML algorithms [119]. Common layouts include the com-
pressed sparse rows (CSR), columns (CSC), or coordinate format
(COO) [52, 56, 76, 92, 99]. Second, existing compression techniques
apply lightweight database compression schemes—such as dictio-
nary encoding, run-length encoding, and offset-list encoding—to
numeric matrices and perform linear algebra (LA) operations such
as matrix multiplications directly on the compressed representation.
Example frameworks are Compressed Linear Algebra (CLA) [34, 35],
Tuple-oriented Compression (TOC) [68], Grammar-compressed Ma-
trices (GCM) [37], and AWARE [13] (see Figure 1, top). AWARE
creates compressed matrices (C) in a workload-aware manner by
(1) extracting a workload summary of the program at compile-time,
as well as (2) workload-aware compression and compression-aware
recompilation at runtime. Existing work struggles though to effi-
ciently rediscover structural data redundancy in data-centric ML.

A Case for Compressed Pre-processing: Feature transfor-
mations encode categorical and numerical features into numerical
matrices [84]. This conversion is a rich source of information about

https://doi.org/XX.XX/XXX.XX
www.github.com/damslab/reproducibility/tree/master/vldb2026-BWARE
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

10 510 410 310 210 1100101102

%
 D

is
tin

ct

Ad
ul

t

C
at

C
ri

te
o

C
ry

pt
o

H
om

e
K

D
D

Sa
nt

an
de

r

Distinct Columns
(a) Relative Number of Distinct Values.

100 101 102 103
10 2

100

102

M
AE

Crypto

100 101 102 103

Santander

Equi-width Equi-height

Bins
(b) Lossy Quantization Effect on Values.

100102104

Distinct
1021041061081010

Si
ze

 [B
]

100102104

Rows
1021041061081010

100 102 104

Cols
10510710910111013

Dense MCSR COO CSR DDC

(c) Result Sizes of One-Hot/Dummy Coding.

Figure 2: Three Figures Highlighting Properties of Data Containing Exploitable Compression Potential.

structural data redundancy. For example, one-hot encoding a cat-
egorical feature requires determining the dictionary of 𝑑 distinct
items and creating 𝑑 perfectly correlated binary features. Transfor-
mations like binning and feature hashing represent user-defined,
lossy decisions which give upper bounds for code word sizes as
well. Furthermore, data-centric ML pipelines iteratively evaluate
additional features and different transformations. Therefore, we
make a case for pushing compression through feature transforma-
tions and feature engineering to the sources in order to speed-up
feature engineering and reduce the overhead of rediscovering data
redundancy during matrix compression. Support requires (1) com-
pressing frames in a form amenable to compressed feature transfor-
mations, (2) supporting compressed I/O, as well as (3) compressed
feature engineering and feature transformations. Since data and
workload characteristics of enumerated ML pipelines vary, iterative
ML training would benefit from morphing [27, 29, 42] compressed
intermediate matrices into workload-optimized layouts [13].

Contributions: In this paper, we introduce BWARE (see Figure 1,
bottom) as a holistic, lossless compression framework for data-
centric ML pipelines. Our main technical contributions are:

• A lightweight frame compression scheme with dictionary
encodings, enabling compressed feature transformations
on heterogeneous data (Section 3).

• A novel morphing technique for workload-aware tuning of
compressed representations (Section 4).

• Parallel and distributed I/O primitives for compressed
blocks without decompression (Section 5).

• An optimizing compiler that injects morphing instructions
into linear algebra programs (Section 6).

• An experimental evaluation that studies the impact of com-
pressed I/O, feature engineering and transformations, as
well as ML training in data-centric ML pipelines (Section 8).

2 EXPLOITABLE REDUNDANCY
We aim to quantify the potential of exploiting structural and value-
based data redundancy. To this end, we first summarize data charac-
teristics of real-world datasets and investigate the potential runtime
impact of pushing compression through pre-processing primitives.
For notation, X is an 𝑛 ×𝑚 frame or matrix, where each column ®𝑥𝑖
has a type ∈ {R,N, Str,Hash}, 𝑛 cells, and 𝑑𝑖 distinct values.

2.1 Distinct Values
The number of distinct values 𝑑 is a classic characteristic to exploit
in compression [26, 73], especially in string columns. Dense Dictio-
nary Coding (DDC) constructs a dictionary of 𝑑 values and encodes
the values as integers positions in the dictionary. Figure 2a shows
the cardinality ratios 𝑑𝑖/𝑛 for datasets characterized in Table 4.
Some columns contain less than 0.001% distinct values. Compressed

operations that exploit 𝑑 ≪ 𝑛 can reduce execution time in such
cases by 99.999% [13]. Unfortunately, there are also columns with
many distinct items, motivating additional encodings.

2.2 Lossy Transformations
Feature engineering can reduce and control the number of distinct
vales 𝑑 via lossy transformations such as binning, feature hashing,
or quantization. An example of static quantization is equi-width bin-
ning, which scales the input values to discretized bins in the range
of min-max with QΔ (X) = X̂ = ⌊Δ(X − X𝑚𝑖𝑛)/(X𝑚𝑎𝑥 − X𝑚𝑖𝑛)⌋.
The resulting number of distinct values is 𝑑 ≤ Δ, where Δ is the
configured number of bins. Increasing Δ generally improves the
accuracy of the approximation of the original data. Δ = 256 is a
common configuration, which allows encoding values in UINT8.
Figure 2b shows the relative loss of equi-width and equi-height
quantization. Equi-height quantization maps input values to buck-
ets by Δ quantiles. The x-axis varies Δ and the y-axis shows the
mean absolute error: MAE(X, X̂) = ∑𝑛𝑚

1 |𝑥𝑖 − 𝑥𝑖 |/𝑛𝑚. The upper
and lower bounds of the blue and orange colored areas are the min/-
max absolute errors. The plot shows a linear relationship (log-scale
plots) of roughly MAE(X,QΔ (X)) ≈ 2 · MAE(X,Q2Δ (X)), mean-
ing if Δ doubles, the MAE error is halved. Learned quantization
schemes [120, 122] use various techniques to find optimal quanti-
zation boundaries (smaller bins for high-frequency value ranges).
Learned schemes can improve the MAE using higher Δ or optimize
for other goals such as model accuracy, or compression size.

2.3 Non-numerical Data
Categorical values are commonly encoded with one-hot encoding,
whereas text is often represented via word embeddings. Feature
transformations producing numerical representations through bin-
ning, feature hashing, recoding, and one-hot encoding have the
potential to compress encoded values. Some are lossy categorical
transformations that reduce 𝑑 . Feature hashing maps values to
Δ buckets, and for Natural Language Processing (NLP), one can
limit the number of unique words or tokens (𝑑) for encoding via
lemmatization [30] and stemming. Figure 2c shows the potential
of compressing one-hot-encoded columns using dictionary com-
pression compared to different sparse representations. The three
sub-plots systematically vary the number of distinct values, rows,
and columns of inputs (with base parameters 𝑑 = 1,000 distinct
values, 𝑛 = 100K rows, and𝑚 = 5 columns). The output shape is
[𝑛,𝑚𝑑], and sparsity is 1/𝑑 . The y-axis shows the in-memory size
in bytes of the encoded output matrix. The dense allocations show
worse performance in all cases beyond very few distinct values
or rows. Sparse layouts such as CSR [12], COO [12], or Modified
CSR (MCSR) [15] yield good compression in all cases. Sparsity ex-
ploitation performs exceptionally well when scaling 𝑑 . However,

2

14
O

ri
gi

na
l

498

O
ne

-H
ot

1

10

1.0

1.5

2.0

D
is

tin
ct

 s
ca

lin
g

Figure 3: Relative 𝑑 Increase when Co-coding Features in
Adult: Original and One-Hot Encoded Features.

0.2

0.4

0.7

0.9

Ti
m

e
[s

]

Ad
ul

t

1.5

2.9

4.4

5.9

C
at 4.6

9.3

13.9

18.5

C
ri

t1
0M

3.4

6.7

10.1

13.4

C
ry

pt
o

1.1

2.2

3.4

4.5

K
D

D 0.2

0.3

0.5

0.6

Sa
la

ri
es

0.6

1.2

1.9

2.5

Sa
nt

an
de

r

1.2

2.5

3.7

5.0

H
om

e

I/O Detect Apply Transform Encode

Figure 4: Breakdown of Reading, Detecting and Applying
Schemas, and Losslessly Encoding Different Datasets.

DDC [9, 13, 34, 73, 115] allocates the least memory. The dampened
size increase for Dense in the middle plot is because 𝑑 (and thus,
the number of one-hot encoded columns) increases only until 1,000.

2.4 Correlation
Column correlation also impacts compressibility. Figure 3 shows the
relative increase in the number of distinct tuples when jointly encod-
ing different columns in the Adult dataset (we removed one column
with 𝑑 > 20𝑘). The left sub-figure shows the original features, while
the right shows the one-hot encoded categorical features. Let 𝑑𝑖, 𝑗 be
the number of distinct tuples of the co-coded columns 𝑖 and 𝑗 . Then,
each cell 𝑐𝑖, 𝑗 shows 𝑐𝑖, 𝑗 = 2𝑑𝑖, 𝑗/(𝑑𝑖 + 𝑑 𝑗) as the relative increase of
distinct tuples if the columns are combined. White (𝑐𝑖, 𝑗 = 1) indi-
cates columns with perfect correlations, which, for instance, is the
case for all pairs of one-hot-encoded columns originating from the
same column. Ideally, co-coding would first group one-hot encoded
features with perfect correlation and subsequently other correlated
features. Rediscovering the correlation between many columns
after feature transformations is non-trivial and potentially very
expensive since each combination of columns has to be analyzed
on a sample. A greedy co-coding algorithm requires O(𝑛2) time to
discover these correlated columns, which makes it even more ex-
pensive after transformations that increase the number of columns,
such as one-hot encoding. The rediscovery is further complicated by
ultra-sparse matrices and the existence of sparsity-exploiting com-
pression schemes, where the full co-coding potential is often not
analyzed in favor of fast compression. Interestingly, Figure 3 shows
a perfect correlation between the original features 3 and 4, while
the one-hot encoded version does not perfectly co-code on all pairs
of columns (see zoomed-in area). This perfect correlation is only
detectable when evaluating larger sub-groups. Therefore, pushing
compression through feature transformations has the potential for
both runtime reduction and improved compression.

2.5 Pre-processing Time
Figure 4 shows the execution time of pre-processing the different
datasets (Table 4). We read CSV files from disk, marked as I/O. In
case of unknown data types, schema detection and application aim
to specialize generic strings into integer and floating point data

1 A Hi
0 C Hi
7 D Lo...

...
...

1 G Hi
0 D Lo
0 D Hi

Frame
0 1
1 0
2 7...
...

0
1
1

0 A
1 C
2 D...

...
k
2
2

0 Hi
0 Lo
1...
0
1
0

CFrame
Dictionary
Size = 𝑡 · 𝑑𝑖
𝑡 = ValueTypeSize
𝑑𝑖 = # unique in col 𝑖

Mapping
Size = #𝐵 · 𝑛
#𝐵 = EncodingSize
𝑚 = # rows

Figure 5: The Compressed Frame Format.

types where possible. We detect data types on a sample and apply
them during data conversion. As a final step, the heterogeneous
frame is transformed into a homogeneous matrix. All these stages
can be improved via compression. Reading compressed representa-
tions from disk reduces the number of read bytes, frames saved with
a schema can skip schema operations, and feature transformations
can be done efficiently on compressed formats.

3 COMPRESSED DATA PREPARATION
This section describes BWARE’s compressed frame layout, feature
transformations to matrices, and feature engineering.

3.1 Compressed Frame Design
Uncompressed frames are tables stored in columnar arrays. Each
column can contain a different value type. Figure 5 shows our
CFrames using a dense dictionary coding (DDC) scheme per column.
Each DDC column consists of a mapping array of length 𝑛 on the
left, and a dictionary array of length 𝑑𝑖 on the right. The map
contains value positions in the dictionary.

Compressed Size: The compressed size of a column depends
on 𝑑𝑖 , 𝑛, and value type size 𝑡 . The encoding scales according to
𝑛#𝐵 + 𝑑𝑖𝑡 where #𝐵 ≈ ⌈log2 (𝑑)⌉ bits/value. The mapping supports
0 or 1 bit and 1-, 2-, 3-, or 4 byte encodings with up to 1, 2, 256,
64K, 16M, and 2G distinct values. If 𝑛#𝐵 + 𝑑𝑖𝑡 > 𝑛𝑡 , where 𝑛𝑡 is the
uncompressed size, we fall back to a pointer to the input column.We
also compress boolean columns, which always increases their size,
but can be leveraged in feature transformations and engineering.

Type Conversion: Additional type conversion can utilize spe-
cialized value types. We detect the value type on a sample of the
data and fuse conversion and column compression. In case of cast-
ing errors, we re-detect a guaranteed correct value type and convert
the column to the newly detected type. We support string, int, char-
acter, boolean, hexcode, and float types of different precision. The
schema detection and application are critical because our system
defaults to reading frames as strings unless a schema is provided on
the initial read. For example, a hash encoded as a hex "bcdef123"
but allocated as a string can be very costly.

Simple Compression:We do not co-code Frame columns be-
cause many feature transformations use unique dictionaries for
individual columns, and different columns can contain different
value types. Subsequent workload-aware morphing (Section 4) of
the compressed format then anyway creates the final matrix com-
pression with full support of different encoding schemes and co-
coding. The proposed transformation techniques would also work
with other dictionary-based compression techniques (e.g., RLE [1],
SDC [13], and OLE [34]), which we leave as interesting future work.

3

Table 1: Transform-Encode Feature Transformation Types.
Compressed

Name Dummy In & Output

Bin, Hash, Pass, & Recode ✓ ✓
Word Embedding ✓

Compression Algorithm:We fuse type detection, type conver-
sion, and DDC compression, for each column ®𝑥𝑖 of the input frame.
The process consists of the following:

(1) Sample values from ®𝑥𝑖 to detect a candidate type. If sampling
is inconclusive, scan the full column to ensure consistent
and valid type inference.

(2) Allocate a mapping array of size 𝑛 to store an integer ID
for each entry in ®𝑥𝑖 .

(3) Traverse all 𝑛 entries, building a hashmap assigning each
distinct value to a unique integer ID in [0, 𝑑𝑖). All values
IDs are stored in the mapping.

(4) If the total compressed cost 𝑛#𝐵 + 𝑑𝑖𝑡 exceeds the uncom-
pressed cost 𝑛𝑡 , abort compression for ®𝑥𝑖 . However, type
detection and conversion may still reduce memory use.

(5) Pack the mapping into a compact format based on 𝑑𝑖 , re-
ducing the bits per entry (approaching #𝐵).

(6) Allocate a dictionary array 𝐷 of size 𝑑𝑖 and fill it using the
hashmap’s key-value pairs <𝑘𝑖 , 𝑣𝑖 > and assign 𝐷𝑣𝑖 = 𝑘𝑖 .

Parallelization:We naïvely parallelize over all input columns
because we compress frame columns independently. However, some
datasets contain few columns and many rows, and parallelizing
only over columns does not fully utilize the available degree of
parallelism. Therefore, each column thread further parallelizes the
parsing of value types from strings—which can be costly (e.g., String
to double [65])—over row segments.

3.2 Compressed Feature Transformations
Transform-encode encodes a heterogeneous frame into a homoge-
neous matrix by applying dedicated feature transformations (built-
in function transformencode). This operation produces two out-
puts: A matrix, and a metadata frame for applying the same trans-
formations to other frames and decoding. We support the transfor-
mations shown in Table 1. Other numeric transformations can be
subsequently performed in linear algebra (e.g., normalization).

Lossless: We support two lossless transformations: Pass returns
the same values as the input cast to double, but requires numeric in-
puts. Recode encodes input values into contiguous integers for each
unique value encountered (DDC encoding, without the dictionary).

Lossy: Similarly, there are two lossy transformations: Bin short
for Binning, constructsΔ buckets to encode the values into. The bins
use equi-height or equi-width quantization. Equi-height constructs
buckets with similar frequency of data points by calculating quantile
boundaries. Equi-width extracts the minimum and maximum value
and constructs buckets of equal ranges. The values returned from
binning are bin IDs. Another technique, hash, hashes each value
and returns the hashed value modulo the maximum number of
buckets 𝑘 to yield a bin ID with X̂ = hash(X) %𝑘 .

Dummy Coding: Dummy coding encodes integer values 𝑣 into
one-hot sparse vector representations with a single one set in posi-
tion 𝑣 . This transformation is typically applied to integer-encoded

features and thus, can be combined with other transformations
such as recoding, feature hashing, and binning.

Word Embeddings: Encoding words into semantic-preserving
numeric vectors is done via word embeddings, which is a sequence
of tokenizing, dummy coding, and matrix multiplication with an
embedding matrix. 𝑛 denotes the size of each embedding vector.

Frame CFrame Matrix CMatrix

Figure 6: Transform Encode Seq.

Sequences: Figure 6
shows different transfor-
mation sequences. In the
following, we abbreviate
frame compression as F-
CF and matrix compres-
sion as M-CM.

Frame to Matrix (F-M-CM): The already existing baseline
approach is to first transform-encode an uncompressed frame to
an uncompressed matrix (F-M). Subsequently, the matrix is com-
pressed (M-CM) with existing lossless matrix compression tech-
niques [13, 34, 37, 68]. However, the separate matrix compression
has to extract statistics from the intermediate matrix again, many
of which are similar to the F-M transformation’s statistics.

Frame to CompressedMatrix (F-CM):Our novel compressing
transformations avoids the double analysis as follows:

• Recoding: Uses two passes: (1) construct a hashmap of
unique values to continuous IDs, and (2) applying the as-
signed IDs. Finally, allocate a dictionary using the hashmap
keys as values and values as offsets.
+Dummy: Use an identity matrix of size 𝑑𝑖x𝑑𝑖 as dictio-
nary. This approach works because recoding guarantees
incremental IDs from 0 to 𝑑𝑖 − 1, allowing a simple identity
dictionary to represent all possible one-hot vectors.

• Pass-Through: Takes a sample if uncompressed and veri-
fies compressibility. If a column is incompressible, return an
uncompressed column group. Otherwise, proceed as recode,
but use the hashmap keys for the dictionary values.

• Hashing: Hashing does not need a hashmap. Instead, we
directly allocate a dictionary similar to recode of 𝑘 values
and hash each tuple directly into the mapping. The hash-
ing method may not use all buckets, potentially creating
unnecessary entries in the compressed dictionary.
+Dummy: Use an identity matrix of 𝑘 rows and columns.
Since the number of hash buckets 𝑘 is known beforehand,
the identity dictionary aligns with the fixed range of IDs.

• Bin: Calculate the bin ID of each value and put it into the
mapping. The dictionary is incrementing integers until Δ.
+Dummy: Use an identity matrix of Δ rows and columns
because binning produces a known number of Δ bin IDs.

Compressed Frame to Compressed Matrix (CF-CM): Com-
pressed frame inputs offer multiple optimization opportunities.
First, we skip constructing hashmaps by directly utilizing the dic-
tionaries of a compressed frame. Second, we reuse the allocated
index structures (i.e., the DDC map, and others for other schemes)
of the CFrame for the CMatrix. Compression is usually dominated
by creating index structures because the ratio of distinct values
is commonly small. Reusing the index structures makes lossless
transformations scale according to O(∑𝑚

𝑖=1 𝑑𝑖) rather than O(𝑛𝑚),
and with dummy coding O(1). These approaches are, however,

4

1 Hi
0 Lo
7 Lo...
...

1 Lo
5 Hi
0 Lo

Frame
1 0 0 · · · 0 1 0
0 1 0 · · · 0 0 1
0 0 1 · · · 0 0 1...

...
1 0 0 · · · 0 0 1
0 0 0 · · · 1 1 0
0 1 0 · · · 0 1 0

Matrix
1→ 0 Hi→ 0
0→ 1 Lo→ 1
7→ 2...
5→ 𝑑1

Recode Map

Build

Apply

O(𝑛𝑚)

O (𝑛𝑚)

Figure 7: Uncompressed Recode & Dummy-code (One-Hot).
Frame

0 1
1 0
2 7...

...
0 5
𝑑11

0 Hi
1 Lo
1...
1
0
1

CFrame
0 1 0 0 0 1 0
1 0 1 0 · · · 1 0 1
2 0 0 1 1...

...
...

0 1
𝑑1 0
1 0

0 𝑑1+1 𝑑1+1 𝑑1+2

∈ R𝑑1x𝑑1

CMatrix
Dictionary
Identity Matrix
[4 Byte]

Map
[n · #B]
Column -
Range
[8 Byte]

CTransform

O(1)

pointers

Figure 8: Compressed Recode & Dummy-code (One-Hot).

1
0
7...
5

Frame
∈ N|X|

To
ke
ni
ze
d
Ve

ct
or 1 1 0 0

0 0 1 0 · · ·
7 0 0 1...

...
5 0 𝑑𝑖

CMatrix

∈ N|X|x𝑑𝑖

CTransform

Dummy code

Pointer or
Reallocation
of Mapping

W
∈ R𝑑𝑖 x𝑣

Embedding

Matrix
Multiply

0 v

CEmb

∈ R|X|x𝑣

O(1)

Dictionary
Pointer

Mapping
Pointer

Figure 9: Compressed Linear Algebra Word Embedding.

only applicable if we use lossless transformations because lossy
transformations have to reallocate or re-map their index structures.

Example: Figure 7 shows recoding and dummy coding an un-
compressed frame of two columns (left) to an uncompressed matrix
(right) with O(𝑛𝑚). Unique values are first mapped and recoded to
contiguous integers. The final dummy coding then returns 𝑑𝑖 columns
for each input column 𝑖 . Figure 8 shows the equivalent operation in
compressed space with time complexity O(1). The dictionary is a
virtual identity matrix of size R𝑑𝑖x𝑑𝑖 stored in a single integer. Fur-
thermore, each output column group contains a column range (for
later co-coding). The mapping size depends on the number of rows 𝑛
and 𝑑𝑖 . Assuming 𝑛 = 1,000, 𝑑1 = 200, and 𝑑2 = 2 the left mapping
uses 1 byte/row and the right uses 1 bit/row. TheCMatrix then requires
1,032 + 176 = 1,208 byte plus object and pointer overheads.

Compressed Word Embedding: Figure 9 shows how we per-
form a compressed word embedding for a single column input in
O(1), only requiring shallow copies of (i.e., pointers to) already allo-
cated intermediates. Since the embedding is a right matrix multiply
and the intermediate compressed matrix’s dictionary is an identity
matrix, the embedding multiplication constructs a new compressed
result with a pointer to the full embedding matrix, reused as the
dictionary of the dictionary encoding.

Intermediate Sizes: Table 2 shows the size formulas of the
different outputs. F-M is the uncompressed standard transforma-
tion, while F-CM and CF-CM produce compressed matrices. The
one-hot F-M size assumes CSR output. Otherwise, dense represen-
tations require 8𝑛𝑑𝑖 byte. ’𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ’ means the compressed input
index structure is used directly in the output.

3.3 Compressed Feature Engineering
Compressed feature engineering constructs additional features (e.g.,
data augmentation) directly on the compressed representation.

Table 2: Transform-Encode Column Size Scaling.
F-M F-CM CF-CM

Recode & Pass 8𝑛 #𝐵𝑛 + 8𝑑𝑖 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
Bin & Hash 8𝑛 #𝐵𝑛 + 8Δ #𝐵𝑛 + 8Δ

With One-Hot / Dummy-Coding

Recode & Pass 12𝑛 #𝐵𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
Bin & Hash 12𝑛 #𝐵𝑛 #𝐵𝑛

Word Embed (8𝑣 + 12)𝑛 #𝐵𝑛 constant

0 7.0
1 7.1
0 9.3
2
1
2 0

X
49.00
50.41
86.49

0

X2
7.0 49.00
7.1 50.41
9.3 86.49

0,1

X′

Index Pointer

Columns
Pointer

□2 𝑐𝑏𝑖𝑛𝑑 (□,□)

Figure 10: Extending Features in a Co-coded Column Group.

Modified Features:We define feature modifications as element-
wise operations that change all feature instances equally. A typ-
ical example is normalization such as standard or min-max scal-
ing. These modifications are needed for well-behaved ML training.
Similar to prior work [13, 34, 37, 68], we perform element-wise
operations in compressed space, with (for most operations) time
complexity in the number of distinct items O(𝑑𝑖) per column group.

Additional Features: An example of concatenating X with
additional features X′ = cbind(X,X2) are squared features. Such
features allow simple linear models to take non-linearities into
account, similar to the effect of kernel-based methods [8], though in
our case the expanded feature space is explicitly materialized.While
such appends normally require allocating the extended matrix,
BWARE exploits their perfect correlation. Figure 10 shows the
modification on a DDC encoding. First, we perform a scalar power
operation, which is a dictionary-only operation, only allocating
a new dictionary and maintaining pointers back to the original
input mapping. Second, when concatenating columns (cbind), we
detect that both indexes point to the same mapping, indicating
perfect correlation and allowing the direct combination as a co-
coded column group. Similar exploitation strategies exist when
subsets of columns are modified and appended.

Performance: The cardinality ratio 𝑛/𝑑𝑖 defines the potential
speedup of compressed feature engineering of individual columns
because the new features have perfect correlation with the original
features and can share index structures. Exploiting the co-coding re-
moves redundant compression analysis of the augmented matrices.
Many compressed operations benefit from extensive co-coding. For
example, left matrix multiplication (LMM), with compressed right
and uncompressed left inputs, benefits because pre-aggregation is
independent of the number of co-coded columns.

4 MORPHING
Our morphing-based compression transforms uncompressed dense,
sparse, or compressed matrices into workload-optimized com-
pressed matrices (e.g., after feature transformations but also during
compressed I/O). The morphing workflow is shown in Figure 11.
For uncompressed inputs, we extract statistics and group columns

5

Matrix
CMatrix

or

Input
Classify 0 1 2 3 4

Extract column statistics

Grouping 0 1,3 2,4
Co-code Statistics

Compress or Morph

sample

Morphing/Compression Plan

0 1,3 2,4

Compressed
Output

Figure 11: Morphing or Compression Workflow.

Algorithm 1Morphing DDC Combine.
Require: DDC𝑀𝑎𝑝 : 𝐼1, 𝐼2, DDC𝐷𝑖𝑐𝑡 : 𝐷1, 𝐷2, DDC𝐶𝑜𝑙𝑠 :𝐶1,𝐶2

M← HashMap, 𝐼𝑅 ← constructIndex(len(𝐼1))
for 𝑖1, 𝑖2, 𝑖𝑅 in 𝐼1, 𝐼2, 𝐼𝑅 do 𝑖𝑅 ← M.putIfAbsent(𝑖1 + 𝑖2𝑑1,M.size())
𝐷𝑅 ← constructDictionary(size(M), len(𝐶1) + len(𝐶2)))
for 𝑘, 𝑣 inM do 𝐷𝑅 [𝑣] ← combine(𝐷1 .get(𝑘%𝑑1), 𝐷2 .get(𝑘/𝑑1))
return DDCColGroup(𝐼𝑅, 𝐷𝑅, combine(𝐶1,𝐶2))

according to these statistics and the workload. In case of a com-
pressedmatrix input, we reuse the statistics of pre-existing co-coded
columns and skip unnecessary exploration. The result is a morphing
plan containing which columns to merge into what encoding.

Morphed Combining of Compressed Columns: To avoid
decompression, we devise a co-coding algorithm that takes two
encoded columns and returns a compressed co-coded column. Al-
gorithm 1 shows the combination of DDC column groups. A naïve
combination would produce the Cartesian product 𝑑𝑖𝑑 𝑗 of the dic-
tionaries, while our solution materializes only dictionary tuples that
co-appear in the index structures 𝑑𝑖, 𝑗 where 𝑑𝑖, 𝑗 ≥ 𝑑𝑖 ∧ 𝑑𝑖, 𝑗 ≥ 𝑑 𝑗 .
Instead of populating the combined index with the naïve Cartesian
product’s index values, we indirectly populate a hashmap to assign
the combined index. Each combined dictionary tuple can then be
looked up in the hashmap. The asymptotic time complexity of this
morphed co-coding is O(𝑛), because typically 𝑑𝑖, 𝑗 ≤ 𝑑𝑖𝑑 𝑗 ≪ 𝑛.

Morphing a Column Encoding: Combined column groups
might not be in the correct encoding per the morphing plan. There-
fore, a final phase morphs group encoding types. Since most of
our encodings are variations of DDC, the conversion is simple. In
general, we try to change encodings while reusing intermediates
as much as possible. In practice, changing encodings typically only
modifies the index structure while keeping the dictionaries.

Fallback Morphing Execution: Sometimes, the set of col-
umn groups selected for co-coding uses heterogeneous encoding
schemes, making it hard to have specialized combining algorithms
for all. The fallback solution—in case specialized kernels are non-
existing for combinations of encodings—is to decompress the se-
lected morphing columns into a temporary matrix followed by a
standard compression from scratch. This fallback allocates a po-
tentially expensive uncompressed matrix of R𝑛x𝑚 to combine. The
fallback case is often avoided because the transformencode cur-
rently only uses DDC. We have specialized methods for most per-
mutations of SDC [13], DDC, CONST, EMPTY and Uncompressed
column groups, therefore, avoiding the fallback.

5 COMPRESSED I/O
Prior work on lossless compressed linear algebra [13, 34, 37, 67] uses
online compression after local or distributed reads, where—at least
for local compression—the entire uncompressed input matrix needs

M

𝑚

𝑛
Tile

In-Mem

𝐵 𝑚 % 𝐵

𝑛 % 𝐵

Tiled

I/O

Disk
(a) Uncompressed

In
de
xe
s

Dictionaries

Tile

In-Mem

𝐵

Tiled

I/O

Disk
(b) Compressed

Figure 12: Compressed and Uncompressed Tiled Formats.

to fit in memory. This approach restricts the size of compressible
matrices and redundantly compresses the matrix for every program
execution. To address these limitations, the BWARE compression
framework can read and write compressed blocks and support
continuous compression of streams (collections) of blocks.

Uncompressed Format: Our on-disk uncompressed format
is a tiled format allowing distributed reads of collections of pairs
of index and matrix blocks. Figure 12a shows this structure. The
format excels in reading from local and distributed (HDFS) storage
since multiple partitions can be read in parallel [32] via e.g. Spark.

Partitions & Tiles: The tiles are grouped into partitions, each
written to a separate file. The number of tiles in each partition is
determined by the partition sizes. The partition sizes are tailored
to the underlying system disk block sizes to improve disk utiliza-
tion. We use partition sizes of 128MB in HDFS (default block size)
and 16KB in local. Partitions are allowed to grow larger than the
minimum size, but preferably multiples of the base disk block sizes.

Compressed Disk Format: To retain efficient distributed pro-
cessing, we reuse the tiled format for compressed I/O. This design
introduces challenges, especially in avoiding decompression. When
reading, we need to combine multiple, potentially differently com-
pressed, tiles. When writing, we need to tile the compressed blocks.
As shown in Figure 12b, index structures and dictionaries are split
into separate partition files. For local writes, dictionaries are writ-
ten once and combined with the tiled indexes during reads. In
distributed settings, each block is compressed independently, stor-
ing both index structures and dictionary. The distributed design
avoids the need to merge compressed blocks for deduplication but
increases compression size due to redundant dictionaries.

Local Reading:When reading a compressed matrix into local
memory, we consolidate blocks into a single columnar compression
scheme. Consolidation occurs when reading from disk, but also
when collecting compressed Spark intermediates. If all blocks in a
column use the same compression scheme, only one dictionary is
used, and index structures are combined directly. Otherwise, some
blocks may require decompression, morphing, or re-compression.
Morphing changes the compression of sub-blocks into the consoli-
dated scheme without decompression. Some group encodings can
directly combine with others, such as CONST, EMPTY and DDC.

Distributed Reading: To read a compressed matrix in Spark
(as a distributed backend of SystemDS), we construct a sequence
of lazily evaluated RDD operations that materialize compressed
sub-blocks. If no separate dictionary file exists, all tiles must be
self-contained with both index structures and dictionaries, and we
return a PairRDD of indexes and blocks. If a dictionary file exists, we
first read index structures into PairRDDs of indexes and blocks, and
the dictionaries into another PairRDD with the same indexes. We
then join them to construct fully self-contained compressed blocks.
If the dictionaries grow beyond the tile size, we increase the default

6

Algorithm 2 Serialized DDC Fused Update and Encode.
Require: 𝑀𝑎𝑡𝑟𝑖𝑥 : X, Scheme: 𝑆 ;𝐶 ← 𝑆𝐶𝑜𝑙𝑠 : ,𝑀 ← 𝑆𝑀𝑎𝑝 , 𝐷 ← 𝑆𝐷𝑖𝑐𝑡

𝑚𝑠 ← 𝑀.size() ⊲ HashMap size before updates
𝐼𝑅 ← constructIndex(rows(X)) ⊲ Allocate output index
for 𝑟 in X.rows() do

𝑡 ← extractTuple(𝑟,X,𝐶) ⊲ Extract tuple from row
𝑖 ← M.putIfAbsent(𝑡,𝑀.size()) ⊲ Increment size on new
if 𝐼𝑅 .notValid(𝑖) then Fail ⊲ Check support of value
else 𝐼𝑅 [𝑟] ← 𝑖

if𝑚𝑠 < 𝑀.size() then 𝐷 ← updateDict(𝑀,𝐷)
return DDCColGroup(𝐼𝑅, 𝐷,𝐶)

Fx = read($1)
Y = read($2)
parfor(t in transformation_specs){

Mx = transformencode(Fx, t)
parfor(a in augment_specs){

Ax = augment(Mx, a)
print(lmCG(Ax , Y))}}

1
2

3

4

Figure 13: Data-Centric ML Pipeline Pseudo-code

block size as a fallback, which happens rarely, since blocks are
written using the smallest of compressed, dense, or sparse formats.

Update & Encode: To support large matrices or streaming use
cases (e.g., continuous data collection), we apply a compression
plan to a stream of incoming matrix blocks. This technique enables
dynamic updates to the compression scheme without full analysis,
and each scheme can run in parallel. Algorithm 2 shows the DDC
encoding variant (one of seven supported encodings). Given a com-
pression scheme (derived from a sample), we first attempt a fused
compression that processes the input block in one pass, optimizing
for memory bandwidth. We allocate the output index structure,
initialized based on the previously seen number of distinct values.
The for loop extracts the co-coded value tuples from the matrix and
probes the map: new tuples are assigned contiguous IDs, while ex-
isting ones reuse their ID. If many distinct tuples appear, the index
structure may fail to encode them, causing an abort and fallback
to a two-pass algorithm that updates and encodes separately. If no
new tuples are encountered, the previous dictionary is reused. Oth-
erwise, the dictionary is updated. This design allows all previously
encoded blocks to share the latest dictionary for computations.

6 COMPILER AND RUNTIME INTEGRATION
Data-centric ML pipelines transform data through multiple stages
from disk over pre-processing and augmentation to ML algorithms.
Figure 13 shows a pipeline containing nested loops for finding the
optimal pre-processing primitives. The stages comprise reading 1 ,
a loop for different feature transformation specs 𝑡 2 , a loop for
augmentation strategies 𝑎 3 , and the training of an ML algorithm
4 , exemplified with a conjugate-gradient linear regression (lmCG).
There is potential to exploit redundancy. However, adding com-
pression at script level would require hand-tuning the individual
combinations of transformations, augmentations, and algorithms
used. Instead, we propose an optimizing compiler and runtime that
dynamically introduces and executes the compression primitives
in a given linear algebra program.

Compiler: We decide, at compile time, where to inject com-
pression and morphing instructions. User-defined linear algebra

t a

w

CMatrix Morph CMatrix
CAug

while(){
q=X@p

}

Algorithm

for t in transformation_specs:

for a in augments:

workload
2

3

4Index
Pointer

Figure 14: Pipeline with Compiler-introduced Morphing.

programs, such as Figure 13, are first compiled into a hierarchy of
statement blocks (for conditional control flow and function calls)
containing directed acyclic graphs (DAG) of high-level operations
(HOPs) per last-level statement block. Each HOP is compiled to
one or more low-level operators (LOPs). We detect HOPs with
morphing potential by considered operations such as read and
transformencode, but also operations like rounding (⌊⌋, ⌊⌉, ⌈⌉) or
comparisons (e.g., ≤, ≠), which produce integer and boolean out-
puts. For each candidate HOPs, we then construct a workload vector
of program-wide affected, data-dependent operations summarizing
the workload costs (i.e., number and cost of executed operations)
of the respective intermediate. If the workload summary indicates
potential for improvement, the HOP is marked for appending a
morphing LOP to its compiled sequence of LOPs.

Runtime: The runtime morphing has access to the compile-time
workload vectors, allowing us to adapt the matrix to the workload.
Since morphing supports compressed and uncompressed inputs, we
handle unforeseen circumstances (e.g., after conditional control flow
and data modification), adjusting the compression while adhering
to subsequent workload and data characteristics.

Example: Figure 14 shows the compiled execution plan for part of
the script from Figure 13. In stage 1 (not shown) the compiler injects
frame compression, depending on the input file, it either compresses
an uncompressed input frame or directly reads aCFrame. TheCFrame
is transformed into a Cmatrix, where index structures can be reused,
and many transformation costs are O(1). For stage 2 , the compiler
introduces a morphing instruction to optimize the compressed format
according to the workload extracted from the linear algebra program
and used operations in stages 3 & 4 (we use DSL-based primitives
for augmentation and algorithms). For some operations, the optimizer
also introduces morphing into the ML algorithms in 4 .

7 COMPRESSED OPERATIONS
Besides compressed I/O and data preparation, BWARE adds support
for new compressed operations, relevant for data-centric ML.

Slicing Ranges: Extracting continuous row ranges from the
compressed frames or matrices is efficient by slicing the index
structures and retaining pointers to the input dictionaries. We use
this for tiling in I/O, Spark broadcasting, and range-based selections.

Selection Matrix Multiply: Selecting a random sample from a
matrix can be done via matrix multiplication. If we define a sparse
matrix S, with a single 1 in each row and then left matrix multiply
it with a matrix X, this operation selects rows from X. A 1’s posi-
tion in S determines the source row by its column position and the
target row by its row position. This multiplication is, for instance,
used in the initialization of K-Means where 𝑘 random rows for
each run in K-Means act as cluster starting points. For compressed

7

Table 3: Compressed Operations, incl. New in BWARE.
M is a Matrix, v𝑟 /v𝑐 are row/col-vectors, 𝑠 is a scalar, S is a selection

matrix, □ ∈ {+,-,/,·,%,ˆ,|,&,>,<,==,≤,≥,≠} are operators, M⊤ is transposed,
CM is compressed, X is the same input, and @ is matrix multiply.

MatMult CM@M, CM⊤@M, CM@M⊤ , CM⊤@M⊤ , CM@CM, CM⊤@CM,
CM@CM⊤ , CM⊤@CM⊤ , CX⊤@CX, S@CM

FusedChain CX⊤@CX@v𝑐 , CX⊤@(v𝑟 · (CX@v𝑐)) , CX⊤@((CX@v𝑐) − v𝑟)
Unary abs, cos, exp, ⌊ ⌋, ⌊ ⌉,⌈ ⌉, isNA, isInf, log, ¬, sin,

sign, softmax, sqrt, tan, sigmoid,
Binary CM□M,M□CM, CM□v𝑟 , CM□v𝑐 , and CM□𝑠

removeEmpty(CM, v𝑐), replace(CM, 𝑠)
Aggregate sum, sd, var, mean, min, max, rowSums, ... , rowMaxs, colSums, ... , colMaxs
Reorg rbind(CM,CM), cbind(CM,CM), CM⊤ , CM[𝑠 : 𝑠, 𝑠 : 𝑠]
Transform transformencode(CF, 𝑠) → CM,transformencode(F, 𝑠) → CM

selection multiplication, we use a left compressed matrix multiply
that does not pre-aggregate the intermediate matrix, unlike prior
work [13, 34, 37, 68]. We use the non-zero values of the left side ma-
trix (guaranteed to be all 1s) to selectively extract compressed row
tuples, and decompress them into the output matrix. This solution
leverages the index structures of the compression schemes. Ex-
tracting larger sub-matrices into compressed intermediates without
decompression is interesting future work.

Overview: Table 3 lists the compressed operations supported in
BWARE with several new operators—notably, operators for mini-
batch algorithms, pre-processing, and writing such as slicing and
selection—compared to AWARE [13]. We support most linear alge-
bra operations that are frequently executed on large matrices.

8 EXPERIMENTS
Our experiments study various properties of workload-aware com-
pression. We start with the sizes and compression speed of frames.
Then, we compare lossless and lossy approaches to feature transfor-
mations.We showhow our solution scales by evaluating polynomial
feature engineering and highlight a word embedding NLP example
with a fully connected layer. Further experiments show end-to-end
ML algorithms using both lossless and lossy feature engineering.
We also evaluate end-to-end data-centric ML pipelines that iterates
through multiple feature transformations. Finally, we compare the
transformation performance to other data and ML systems.

8.1 Experimental Setting
HW/SW Setup: All experiments are conducted on a server with
two Intel Xeon Gold 6338 2.0-3.2 GHz (64 cores, 128 threads) and
1 TB 3200MHz DDR4 RAM (peak performance is 6.55 TFLOP/s),
16× SATA SSDs in RAID 0 for the datasets, and an Intel Optane SSD
DC P5800X for the programs, scripts, and local evictions (if live
variables exceed the buffer pool size). Our software stack comprises
Java 17.0.11, SystemDS [15, 16], Hadoop 3.3.6, and Spark 3.5.0.

Baselines: As baselines, we compare BWARE with SystemDS
uncompressed I/O and operations (ULA), AWARE [13] for lossless
matrix compression, as well as ML systems (i.e., TensorFlow 2.15 [3]
and SKLearn 1.4.1 [21, 82]), data management systems (i.e., Pandas
2.1 [105] and Polars 0.20 [112]), and generic compression systems
(i.e., ZStd 1.5.5-4 [36] and Snappy 1.1.10.3 [39]).

Datasets: Table 4 summarizes our used datasets, each having
different data types and feature transformation requirements. Cat
and Num refer to the number of categorical and numerical features,
respectively. The tasks are split into regression, binary classification,

Table 4: Used Datasets and ML Tasks.
Dataset Name # Row # Col Cat Num Task

Adult [14] 32,561 15 9 6 Bin
CatInDat [91, 113] 900,000 24 16 8 Bin
Criteo Day 0 [53] 195,841,983 39 25 14 Bin

Crypto [106] 24,236,806 10 1 9 Reg
KDD98 [79] 96,367 481 135 334 Reg

Santander [86] 200,000 201 0 201 Bin
HomeCredit [72] 307,511 121 16 105 Bin

Salaries [10] 397 6 3 3 Bin
AMiner V16 [104] 5,259,857 1,000 1,000 0 Emb

and word embedding tasks. Adult [14] (also called Census) is a sam-
ple from the person records in a 1990 U.S. census. CatInDat [91, 113]
(Cat) is a synthetic dataset from Kaggle that contains categorical
features for predicting cat ownership, where we combined the two
competition datasets. Criteo [53] is a dataset of millions of display
advertisements for predicting which ads were clicked. Criteo10M
is the first 10 million rows from Criteo. Crypto [106] is a Google
competition dataset for time series forecasting of crypto-currencies.
KDD98 [79] is a knowledge discovery competition dataset from
1998. Salaries [10] is a small dataset containing the salaries of profes-
sors in a U.S. college. Santander [86] is another Kaggle competition
to predict customer transactions. HomeCredit [72] predicts how
likely each applicant is to repay a loan. Finally, AMiner V16 [104]
contains abstracts, where we removed non-English abstracts, equa-
tions, symbols, and limited the abstracts to 1000 words.

8.2 Frame Compression and I/O
Figure 15 shows the compressed frames and I/O performance.

In-Memory Size: Figure 15’s top row shows three different mea-
sures of the in-memory compressed frame. First, String represents
a frame with the default generic string values without exploiting
the value types of the columns. Second, Detect automatically de-
tects the value types. Detect achieves in-memory size reductions
from 1.5x to 18x across the datasets compared to String. However,
BWARE’s compressed frame reduces the size by 19x to 65x. Com-
paring BWAREwithDetect shows additional improvements of 1.09x
to 43x. A low ratio relative to Detect occurs in cases with contin-
uous values and high cardinality, such as Salaries or Crypto. We
observe that BWARE requires less memory and guarantees (except
for boolean data) smaller or equal sizes to Detect. Interestingly,
BWARE reduces allocated size even for the tiny Salaries dataset.

On-Disk Size: The second row in Figure 15 shows the size
of the datasets on disk. The first column in each figure shows
the original size of CSV files. The second column compares our
serialized detected frame saved in HDFS sequence files, with tiles
of 16K rows. We see that there can be an overhead in storing the
tiles. The worst case is KDD98 going from 112MB CSV to 171MB, a
1.5x increase. If HDFS’s block-wise compression is enabled, then
using Snappy improves KDD98’s binary files to 63MB, while ZStd
is better with 36MB. Enabling our compressed writers in BWARE,
we get 45MB, and ZStd’s nested compression 24MB, an on-disk
reduction of 4.6x. In conclusion, BWARE performs almost equally
to other compression frameworks for individual block compression,
and we can recursively stack compression for improvements.

8

104
105
106
107
108
109

1010

M
em

or
y

[B
]

Ad
ul

t

C
at

C
ri

t1
0M

C
ry

pt
o

K
D

D

Sa
la

ri
es

Sa
n

H
om

e

String
Type
Detect
Type
BWARE

104
105
106
107
108
109

D
is

k
[B

]

Ad
ul

t
C

at

C
ri

t1
0M

C
ry

pt
o

K
D

D

Sa
la

ri
es

Sa
n

H
om

e

Snappy
ZStd
BWARE
Snappy
BWARE
ZStd

100

101

Ti
m

e
[s

]

Ad
ul

t

C
at

C
ri

t1
0M

C
ry

pt
o

K
D

D

Sa
l

Sa
n Write

Detect
Write
BWARE

10 1

100

101

Ti
m

e
[s

]

Ad
ul

t

C
at

C
ri

t1
0M

C
ry

pt
o

K
D

D

Sa
la

ri
es

Sa
n

H
om

e Read
String
Read
Binary
Read
BWARE

Figure 15: Frame Compression.

104105106107108109

M
em

or
y

[B
]

Ad
ul

t

C
at

C
ri

t1
0M

Ti
m

eo
ut

C
ry

pt
o

K
D

D Sa
la

ri
es

Sa
n

H
om

e

Sparse or Dense AWARE BWARE

104105106107108109

D
is

k
[B

]

Ad
ul

t

C
at

C
ri

t1
0M

Ti
m

eo
ut

C
ry

pt
o

K
D

D Sa
la

ri
es

Sa
n

H
om

e

Sparse or Dense AWARE(BWARE IO) BWARE+Morph

10 1
100
101
102
103

Ti
m

e
[s

]

Ad
ul

t

C
at

C
ri

t
Ti

m
eo

ut

C
ry

p

K
D

D

Sa
l

Sa
n

H
om

e

String Bin AWARE BWARE BWARE+Morph

Figure 16: Lossless Transform-Encode.

Write/Read Time: The third row in Figure 15 shows the time
to write the different formats. The writing time includes schema
detection, application, and compression if applicable. BWARE’s
compression has a comparable overhead to other compressors. The
last row in Figure 15 shows the reading performance from CSV,
uncompressed, and compressed binary files. We observe that read-
ing text formats should be avoided, but sometimes it is competitive
with our binary format (e.g., in Cat). The BWARE reader performs
similarly or better than the uncompressed binary reader, even in
incompressible cases like Crypto and Santander. The exception is
the tiny Salaries dataset, where the binary reader is the fastest.

8.3 Compressed Feature Transformations
Next, we evaluate our compressed feature transformations.

Lossless Encoding: We one-hot-encode all categorical, and
pass-through numeric features in a lossless encoding. With this
scheme, we copy over values of Crypto and Salaries because all
values are numeric, while most columns in Cat and Criteo are one-
hot encoded. Figure 16 shows the performance. The rows include
(1) the matrix’s size in memory, (2) the saved size on disk, (3) the

104
105
106
107
108
109

M
em

or
y

[B
]

Ad
ul

t

C
at

C
ri

t1
0M

C
ry

pt
o

K
D

D

Sa
la

ri
es

Sa
nt

an
de

r

H
om

e

Baseline AWARE BWARE BWARE+Morph

104
106
108

1010

D
is

k
[B

]

Ad
ul

t

C
at

C
ry

pt
o

K
D

D Sa
la

ri
es

101 102

10 1
100
101

Ti
m

e
[s

]

101 103

C
at

101 103 101 103 101 103

K
D

D

101 102

Sa
l

101 103 101 103

H
om

e

0.8
0.9
1.0

R
el

at
iv

e
E

nt
ro

py

Lossless Lossless

101 102
10 410 310 210 1

nM
AE

101 103

Lossless

101 103 101 103 101 103 101 102 101 103 101 103

Figure 17: Lossy Transform-Encode Size and Time.

execution time of transformencode plus compression or morph-
ing. AWARE and BWARE use less memory than a default sparse
or dense matrix, even in the incompressible Crypto and Santander.
AWARE’s total memory allocation size is sometimes smaller than
BWARE. However, BWARE reuses the index structure from the
compressed frame arrays in case of 1-to-1 mappings. Furthermore,
BWARE’s on-disk representation is slightly worse than AWARE
(which we extended to use BWARE’s I/O operations).

Lossless Time: The last row of Figure 16 shows the transform-
encode time. String refers to string inputs, while Binary (F-M)
uses detected types. AWARE (F-M-CM) encodes detected types
followed by compression from scratch, and BWARE (F-CM) uses
compressed feature transformations. BWARE is faster than the other
solutions. AWARE’s compression of Criteo shows what happens
when the rediscovering of column correlations dominates due to
compression after feature transformations (see Figure 3). Criteo is
encoded into millions of perfectly correlated columns because of
the one-hot encoding. AWARE tries to discover the correlation and
starts co-coding. However, due to millions of columns with perfect
correlation each co-coding candidate takes time to verify, it takes
very long and thus, we timeout the runs at 1,000 seconds.

Lossy Encoding: Figure 17 shows results with different Δ
for binning or categorical hash buckets on the x-axis. Note that
the information loss is equivalent in all cases. The loss is mea-
sured by normalized Mean Average Error (nMAE) and relative
entropy = 𝐻 (X̂)/𝐻 (X) where 𝐻 (X) is Shannon’s entropy. BWARE
without morphing uses the DDC compression of the compressed
transformencode, while BWARE with morphing additionally
morphs the compression scheme after the transformation. AWARE,
BWARE, and BWARE+Morphing use less space than the uncom-
pressed baseline. AWARE returns better-compressed results than
BWARE because it has a larger exploration space, while BWARE
is more optimized for speed and reuse. When writing to disk, we
always use morphing to improve the organization. We observe that
the morphed representation is close to AWARE’s saved format. The
results show that BWARE is faster across all datasets while being

9

100
101
102
103
104

Ti
m

e
[m

s]

100K 1M 10M 100M

Uncompressed Compressed

Figure 18: Compressed Input Frames.

on-par for Santander. BWARE yields improvements of 2x to 20x
over AWARE and 1x to 5x over the baseline SystemDS.

Encoding Time Breakdown: So far, we used uncompressed
frame inputs. If the input frame’s columns are compressed, the
asymptotic runtime changes to constant for some transformations.
Figure 18 shows the parallel lossless transform-encode time of
individual columns of Criteo for different numbers of rows with
columns sorted by compressed execution time. Some columns in
Criteo are compressed, while others have many distinct values
and, therefore, are uncompressed. The constant encoding time can
be seen in the plateau of the first 50% of the columns. The con-
stant groups take ≈ 40ms, except for 10M where it consistently
is ≈ 100𝑚𝑠 . The following 25% have to change their compressed
index structures, and the final 25% are uncompressed. The two fast
columns in uncompressed are boolean columns. Since our hard-
ware setup has a high degree of parallelism, the total encoding
time is equal to the tallest bar, while a single-threaded execution
is equal to the integral of the colored areas. Therefore, the end-to-
end difference between F-CM and CF-CM is small if CF contains
incompressible columns and there are fewer columns than cores.

8.4 Compressed Word Embeddings
Figure 19 shows the performance of encoding already tokenized
abstracts from DBLP [104], padded with zeros to a maximum of
1,000 tokens. All plots show the total execution time of 10 repeti-
tions of encoding word embeddings with word2vec [71]. The first
row contains word embedding only, while the second row adds a
fully-connected layer with ReLu activation on the embedded out-
puts. The columns show increasing numbers of unique tokens (𝑑),
starting at 𝑑 = 1𝐾 and increasing to 100𝐾 . The x-axis is the number
of abstracts (𝑎), encoded, while the y-axis is execution time. We
observe that ULA is slower at embedding but as fast as Tensor-
Flow once the network layer is added. ULA catches up because of
efficient sparse linear algebra not leveraged in TensorFlow. Ten-
sorFlow and ULA are not affected by increasing 𝑑 , while BWARE
is. BWARE shows the best performance in all cases in embedding
time and scales further than the other implementations. When
adding the neural network layer, the performance is slower in cases
where 𝑎 < 𝑑 . However, once 𝑎 > 𝑑 , BWARE asymptotically and
empirically outperforms all the other implementations.

8.5 ML Algorithm Performance
To quantify BWARE’s impact on the end-to-end performance of
traditional ML pipelines, we evaluate a conjugate gradient linear
regression model (lmCG) training with different lossless and lossy
feature transformations as well as feature engineering pipelines.

Lossless: Figure 20 shows the performance of the lmCG training
algorithm. Themax #iterations is set to min(𝑚, 1000). The algorithm
is sparse-safe, allowing the use of sparse linear algebra. We observe

101
102
103

en
co

de d = 1K d = 10K

ULA TensorFlow 2.15 BWARE >IntCells

d = 100K

103 104 105 106

Number of Abstracts

102
103

+
 li

ne
ar

103 104 105 106

Number of Abstracts
103 104 105 106

Number of Abstracts

Ti
m

e
[s

]

Figure 19: Compressed Word Embedding.

101

102

103

Ti
m

e
[s

]

Ad
ul

t

C
at

C
ri

t1
0M C

ry
pt

o

K
D

D

Sa
l

Sa
n

ULA BWARE+Morphing

H
om

e

Figure 20: LM Conjugate Gradient Baseline.

a small slowdown using BWARE of 22% in KDD and 25% in Home.
However, Criteo (with 10 million rows) improves by 2x from 1,368
to 681 seconds. Incompressible cases incur minor overhead, but for
Crypto and Santander, execution time remains almost unchanged as
compression falls back to uncompressed formats. We do not show
model accuracies because the results of methods are equivalent.
However, as an example, the method scores 78.9 AUC for Cat on
Kaggle, while the top score is 80% [91].

Lossy: Figure 21a shows the results when controlling the number
of distinct values Δ through lossy feature transformations. The
solid lines are the lossless baselines, and dashed lines vary Δ. The
Crypto dataset is almost purely numeric and a dense dataset. Due
to the large number of rows and many distinct values, we expected
and observe benefit from reducing the number of unique values.
BWARE is able to exploit the reduced number of unique values,
with a increase in runtimes when Δ increases. However, there are
also cases that do not benefit, such as KDD with few rows, where
only extremely low values of Δ yield performance improvements.
Lower Δ generally makes models fit worse, but not always, and
sometimes lower Δ can have a positive regularization effect that
gives better accuracies. For KDD, the break-even point of lossy
and lossless accuracies is Δ = 800. Models are generally able to fit
just as well, and sometimes better, on some lossy inputs using only
quantization. The results indicate that Δ has a positive impact on
runtime with an unknown negative or positive impact on accuracy.
Hence, one should perform automated feature engineering.

Scaling: Figure 21b shows the scalability of BWARE in terms of
performance on increasingly larger subsets of the Criteo dataset.
We observe a starting 2x performance improvement in Figure 20
at 104 rows. The improvement increases in all cases until 109 rows.
BWARE is a substantial 11x faster at 108 rows, improving from
31,792s to 2,880s. Utilizing lossy encodings on Criteo, ULA performs
better for smaller sizes, but BWARE shows improved performance
at scale, with an increasing gap for more rows.

Polynomial Regression: Figure 21c shows the results for re-
gression with polynomial features. BWARE handles these features
with moderate overhead and occasional gains. The best case is the
Crypto dataset, where the polynomial features do not affect the
execution time when combined with lossy feature transformations.
In contrast, on the Home dataset with lossless transformations,

10

101 102 103 104

8
16
24
32

Ti
m

e
[s

]

Crypto
101 102 103 104

KDD

ULA BWARE

(a) lmCG w/ Increasing Δ.
104 105 106 107 108

101
102
103
104

Ti
m

e
[s

] Criteo

ULA BWARE 50

#Row

(b) lmCG w/ Increasing 𝑛.

1 3 5 7 9

101

102

Ti
m

e
[s

] Adult

1 3 5 7 9

Crypto
1 3 5 7 9

Number of Polynomials Added

KDD
1 3 5 7 9

San
1 3 5 7 9

Home

ULA BWARE 50

(c) Polynomial Regression.

101
102
103
104

Ti
m

e
[s

] Sant

L2SVM

Criteo

PCA50

ULA BWARE+Morph

Home

K-Means50

(d) Various ML Algorithms.

Figure 21: Combined Experiments Showcasing Various Properties of BWARE.

Table 5: Pipeline LM: 8 Transform Encode & 8 Polynomials.
Dataset Measure ULA AWARE BWARE

KDD98 Time 654s 452s 251s
Instructions 110·1012 100·1012 44·1012

Instructions per Cycle 0.94 2.59 2.68
L1-dcache-miss 7,792·109 1,740·109 786·109

Compress/Morph — 148s 21.9s
Transform-Encode 74.1s 59.9s 7.95s

Energy [74] 338kJ 185kJ 92kJ

Home Time 431s 266s 160s
Adult Time 19.9s 22.1s 16.6s

Santander Time 489s 376s 374s
Cat Time 467s 170s 63s

Table 6: 8 Transforms & Polynomials + MICE, and Winsorize
Dataset Measure ULA BWARE

KDD98 Time 919.6s 255.3s
Compression & Morphing — 24.9s

Transform-Encode 37.7s 5.4s
Instructions 103·1012 45·1012

Instructions per Cycle 0.82 2.68
L1 Cache Misses 8,276·109 830·109

performance drops at low polynomial degrees due to a few incom-
pressible columns (see Figure 2a), whose compression attempts do
not amortize. However, lossy transformed columns perform well.

Other Algorithms: AWARE already studied the impact of
workload-aware compression on multiple linear-algebra-based ML
algorithms, which we inherit for BWARE. Figure 21d shows the
performance of additional algorithms. First, BWARE shows equal
performance to ULA for L2SVM on Santander. PCA on Criteo with
a lossy transformation shows an 83x improvement in execution
time. This relative improvement in performance can be arbitrarily
large depending on Δ because PCA is asymptotically faster in com-
pressed space. Finally, BWARE shows a solid 2x improvement for
K-means on Home using a lossy transformation.

8.6 Data-centric ML Pipeline
Furthermore, we study the execution time and characteristics of
end-to-end, data-centric ML pipelines.

Feature Engineering: Table 5 shows the results for an ML
pipeline similar to Figures 13 and 14. This pipeline performs a
grid search of hyper-parameters with eight Δ ranging from 5
to 480 and eight polynomials from 1 to 8, with two outer loops:
for transformencode and polynomial feature construction. The
top half of the table shows performance numbers for the KDD
dataset. AWARE is 1.45x faster than ULA, and BWARE further im-
proves by 1.8x. BWARE is the fastest because it reuses intermediate

105 106 107 108
Number of Rows

100
101
102
103

Ti
m

e
[s

] E2E

105 106 107 108
Number of Rows

TE

Polars 0.20
Pandas 2.1

SKLearn 1.4.1
TensorFlow 2.15

ULA BWARE CSV
BWARE

Figure 22: Performance Comparison with Other Systems.

compressed representations through the feature transformations,
and AWARE rediscovers correlated columns. Here, AWARE uses
BWARE’s handling of polynomial features. AWARE and BWARE
also show better cache locality than ULA, which decreases L1 cache
misses by an order of magnitude, and in turn increases instructions
performed per CPU cycle. Furthermore, BWARE improves energy
consumption due to more efficient data types and reduced cache
misses, because data access is a major energy consumer [45]. The
bottom half of the table shows the results of the same pipeline on
Home, Adult, Santander, and Cat. BWARE is the fastest in all cases.
AWARE also does well, except a small overhead on Adult where
the compression overhead cannot be amortized.

Data Cleaning: Table 6 shows results for a pipeline extended
with additional pre-processing steps between feature transforma-
tions and polynomial expansions. Specifically, we apply missing
value imputation using MICE [109] and perform outlier removal
through winsorization [108]. These additional steps increase the
overall workload, resulting in better hardware utilization and fur-
ther widening the performance gap between BWARE and ULA. In
this setting, BWARE achieves 3.6x faster processing on KDD.

8.7 Comparisons with Other Systems
Finally, Figure 22 compares the performance of transformencode
on Criteo with other systems. The left plot (E2E) shows end-
to-end runtimes with CSV parsing, and the right (TE) only
transformencode. ULA and BWARE have high startup times in
E2E, and JIT compilation benefits in Java are limited for small inputs.
However, for larger sizes, ULA (with UPLIFT [84] for feature trans-
formations) and BWARE outperform the other systems. Polars is
the only system with a dense matrix result but with UINT8 encoded
columns. All other systems use sparse transformations to run until
107 rows. At 107 rows, BWARE is 4.7x (E2E) and 11.4x (TE) faster
than Polars. BWARE’s E2E runtimes are equal to ULA when read-
ing CSV, which is still good because it yields a compressed output
for subsequent operations (F-CM). We also included a dotted line
for BWARE reading a compressed frame from disk for compressed
encoding (CF-CM). For more than 232 cells (max 4B integer), many
of the systems crash. SK-learn can scale further, but BWARE is 11.9x
(E2E) and 76.2x (TE) faster than SK-learn at 108 rows.

11

9 RELATEDWORK
BWARE has connections with multiple related fields, including
database compression, matrix compression, and specific techniques
for workload-awareness and data reorganization.

Database Frame Compression: Tabular data in databases are
commonly compressed with schemes exploiting homogeneous
column types [2, 100]. Data systems often employ variations of
five common lightweight encodings [26, 28]: Frame-of-reference
(FOR) [124], delta encoding (DELTA) [124], dictionary encoding
(DDC) [9, 73, 115], run-length encoding (RLE) [1] and null sup-
pression (NS) [66, 115]. General-purpose, heavy-weight compres-
sors are applied to compress any data modality. Examples include
Snappy [39] and Zstd [36]. Most systems support storing data in
compressed formats that can combine multiple techniques. Btr-
Blocks [62] is a recent work showcasing the effectiveness of nesting
compression techniques with highly efficient SIMD decompression.
Other examples include Parquet [23], HDF5 [41], and SciDB [101]
for storage, as well as Arrow [24, 25] for data transfer. There are
also dedicated compression techniques for specific value types such
as strings in Pattern-Based Compression (PBC) [123] and FSST [19].
Fine-grained methods, such as white-box compression [38], share
some commonalities but are orthogonal. In BWARE, we read and
write compressed data blocks—similarly to existing work [63]—but
process feature transformations and ML pipelines directly on the
compressed formats without decompression.

Lossless Matrix Compression: Compression of numeric data
has a long history as well. The most studied type of compression is
integer-based compression [26, 28, 62, 66] while floating point data
with exponent and mantissa pose some difficulties. Example tech-
niques for floating point data include XOR [88] compression in Go-
rilla [83], advancements in Chimp [69], and more recently ALP [5].
Sparsity-exploiting compression had already in 1990 full software
support with SparseKit [92] using specialized data structures to
exploit non-zero values (CSR, CSC, and COO). Sparsity exploitation
is now commonly supported in most linear algebra frameworks
such as IntelMKL (now behind OneAPI) [52] and CuSparse [76],
but is still in active research [56, 99, 116]. UniSparse [70] is a recent
example of an MLIR-based [64] sparse tensor system with a com-
piler optimizing and selecting various sparse formats by—similar
to BWARE—decoupling the logical representations from the given
user programs. Zhang et al. explores generating code that—similar
to our morphing—automatically converts intermediates to sparse
tensors [121]. WACO [117] is another recent sparsity-exploiting
framework, that optimizes the sparse formats based on operation
and data characteristics. More general redundancy exploitation
through compression was achieved by Compressed Linear Alge-
bra (CLA) [34, 35], Tuple-oriented Compression (TOC) [68], and
AWARE [13], which took inspiration from sparse matrix compres-
sion [55, 59]. In contrast to existing work, we push compression
through entire data-centric ML pipelines including feature trans-
formations and engineering without recompressing the data.

Lossy Matrix Compression:Mainstream ML systems mostly
rely on homogeneous lossy compression partially because it retains
regular dense data access. There are three main approaches. First,
quantization uniformly encodes all floating point values in fixed
or reduced precision [50]. Specialized data types such as Google’s
bFloat16 [20, 54], Intel’s Flexpoint [58] and NVIDIA’s TF32 [75]

are also very effective. Some solutions use multiple precision lev-
els for different operators [114, 122], even going as far as 1 bit
data exchange [46, 96]. Second, dimensionality reduction such as
auto encoders [51], PCA [81], or t-SNE [44] are also widely used.
Third, sampling or coresets [6] allow training with fewer mini
batches [103] or random samples for each batch [78]. Our approach
combines user-defined lossy feature transformations with system-
level lossless compression to avoid trust concerns in result validity.

Workload-aware Compression: The online, workload-aware
compression from AWARE [13] adapts the compressed layout based
on workload characteristics of a linear algebra program. Others
similarly adapt the data organization based on sparsity [7]. Sev-
eral systems also combine cost modeling of compressed size and
query performance [18, 22, 29, 57, 110], but many of these tech-
niques rely on an offline compression for selection and adapting to
workloads [17] or workload traces [80]. In contrast, BWARE per-
forms workload-aware frame and matrix compression in an online
manner during runtime before and after feature transformations.

Data Reorganization: Our morphing technique is primarily
a data reorganization strategy. Prior work, like database cracking
by Idreos et al. [43, 47–49, 87], also dynamically reorganizes data
based on query workload. Other work dynamically chooses: (1)
the physical design of storing data [11], (2) where to place tuples
on distributed servers (e.g. Clay [97]), and (3) online deduplication
of stored blocks [118]. MorphStore [26, 42] proposes a morphing
wrapper, enabling on-the-fly recompression of intermediate results
with lightweight compression schemes for relational algebra. Un-
like existing work, we perform workload-aware reorganization of
matrices for data-centric ML pipelines.

Compressed Operations: There exist multiple other works for
performing operations directly on compressed (matrix) formats. Fac-
torized learning [56, 61, 77, 95] pushes ML workloads through joins,
avoiding the materialization of denormalized tables. Grammar-
based compressed operations [4, 31, 37] also show good perfor-
mance, specifically the CSRV representation [37]. CLA [34, 35] sup-
ports multiple operations in compressed space, while AWARE [13]
extended the operation support to full matrix multiplications.
BWARE further extends the operations to feature transformations.

10 CONCLUSIONS
We introduced BWARE as a holistic, lossless compression frame-
work for data-centric ML pipelines, which is fully integrated in
SystemDS [15, 16]. In this context, we push compression through
feature transformations and feature engineering into the sources.
We draw two main conclusions. First, this compression strategy
is able to yield substantial runtime improvements because of re-
peated feature transformations and ML model training. Second,
compressed feature transformations preserve information about
structural redundancy, achieving improved compression ratios and
thus, better data locality for operations. Interesting future work
includes support for more feature transformations (e.g., image aug-
mentation) and specialized, heterogeneous hardware accelerators.

ACKNOWLEDGMENTS
Wegratefully acknowledge funding from theGerman FederalMin-
istry of Research, Technology and Space (under grant BIFOLD25B).

12

REFERENCES
[1] Daniel Abadi et al. 2006. Integrating compression and execution in column-

oriented database systems. In SIGMOD. https://doi.org/10.1145/1142473.
1142548

[2] Daniel Abadi et al. 2013. The Design and Implementation of Modern Column-
Oriented Database Systems. https://dl.acm.org/doi/10.5555/2602024

[3] Martín Abadi, Ashish Agarwal, et al. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. https://www.tensorflow.org/

[4] Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. 2020.
Impossibility Results for Grammar-Compressed Linear Algebra. In NeurIPS,
Vol. 33. 8810–8823. https://proceedings.neurips.cc/paper_files/paper/2020/file/
645e6bfdd05d1a69c5e47b20f0a91d46-Paper.pdf

[5] Azim Afroozeh, Leonardo X. Kuffo, and Peter Boncz. 2023. ALP: Adaptive Loss-
less floating-Point Compression. PACMMOD 1, 4, Article 230 (2023), 26 pages.
https://doi.org/10.1145/3626717

[6] Pankaj K. Agarwal, Sariel Har-Sariel, et al. 2007. Geometric Approximation via
Coresets. https://api.semanticscholar.org/CorpusID:13812735

[7] Willow Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Autoschedul-
ing for sparse tensor algebra with an asymptotic cost model. In PLDI. https:
//doi.org/10.1145/3519939.3523442

[8] Mark A. Aizerman, E. M. Braverman, and L. I. Rozonoer. 1964. Theoretical
Foundations of the Potential Function Method in Pattern Recognition Learning.
In Automation and Remote Control, Vol. 25. 821–837. https://cs.uwaterloo.ca/
~y328yu/classics/kernel.pdf

[9] G. Antoshenkov, D. Lomet, and J. Murray. 1996. Order preserving string com-
pression. In ICDE. 655–663. https://doi.org/10.1109/ICDE.1996.492216

[10] Vincent Arel-Bundock. 2023. Rdatasets: A collection of datasets originally dis-
tributed in various R packages. https://vincentarelbundock.github.io/Rdatasets R
package version 1.0.0 https://raw.githubusercontent.com/vincentarelbundock/
Rdatasets/master/csv/carData/Salaries.csv.

[11] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the
Archipelago between Row-Stores and Column-Stores for Hybrid Workloads. In
SIGMOD. 583–598. https://doi.org/10.1145/2882903.2915231

[12] M.A. Bassiouni. 1985. Data Compression in Scientific and Statistical Databases.
In IEEE Transactions on Software Engineering, Vol. SE-11. 1047–1058. https:
//doi.org/10.1109/TSE.1985.231852

[13] Sebastian Baunsgaard and Matthias Boehm. 2023. AWARE: Workload-aware,
Redundancy-exploiting Linear Algebra. In PACMOD, Vol. 1. Article 2. https:
//doi.org/10.1145/3588682

[14] Barry Becker and Ronny Kohavi. 1996. Adult. UCIMachine Learning Repository.
DOI: https://doi.org/10.24432/C5XW20.

[15] Matthias Boehm et al. 2016. SystemML: Declarative Machine Learning on Spark.
In PVLDB, Vol. 9. https://doi.org/10.14778/3007263.3007279

[16] Matthias Boehm et al. 2020. SystemDS: A Declarative Machine Learning System
for the End-to-End Data Science Lifecycle. In CIDR. https://api.semanticscholar.
org/CorpusID:202230751

[17] Martin Boissier. 2021. Robust and budget-constrained encoding configurations
for in-memory database systems. In PVLDB, Vol. 15. 780–793. https://doi.org/
10.14778/3503585.3503588

[18] Martin Boissier and Max Jendruk. 2019. Workload-Driven and Robust Se-
lection of Compression Schemes for Column Stores. In EDBT. https://api.
semanticscholar.org/CorpusID:81989532

[19] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access
string compression. In PVLDB. https://doi.org/10.14778/3407790.3407851

[20] Google Brain. 2024. bfloat16. https://cloud.google.com/tpu/docs/bfloat16
[21] Lars Buitinck, Gilles Louppe, Mathieu Blondel, et al. 2013. API design for

machine learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning. 108–122.

[22] Lujing Cen, Andreas Kipf, et al. 2021. LEA: A Learned Encoding Advisor for
Column Stores. In aiDM. 4. https://doi.org/10.1145/3464509.3464885

[23] Apache Parquet com. 2023. Apache Parquet: column-oriented data file format
designed for efficient data storage and retrieval. https://parquet.apache.org/

[24] Apache Arrow community. 2023. Apache Arrow: A cross-language development
platform for in-memory analytics. https://arrow.apache.org/

[25] Apache Arrow community. 2023. Apache Arrow: Dictionary Encoding. https:
//arrow.apache.org/docs/java/vector.html#dictionary-encoding

[26] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner. 2017.
Lightweight Data Compression Algorithms: An Experimental Survey (Experi-
ments and Analyses). In EDBT. https://doi.org/10.5441/002%2Fedbt.2017.08

[27] Patrick Damme, Dirk Habich, and Wolfgang Lehner. 2015. Direct Transfor-
mation Techniques for Compressed Data: General Approach and Application
Scenarios. In Advances in Databases and Information Systems, Morzy Tadeusz,
Patrick Valduriez, and Ladjel Bellatreche (Eds.). Springer International Publish-
ing, Cham, 151–165.

[28] Patrick Damme, Annett Ungethüm, Juliana Hildebrandt, Dirk Habich, and
Wolfgang Lehner. 2019. From a Comprehensive Experimental Survey to a Cost-
based Selection Strategy for Lightweight Integer Compression Algorithms. In
TODS, Vol. 44. Article 9, 46 pages. https://doi.org/10.1145/3323991

[29] Patrick Damme, Annett Ungethüm, Johannes Pietrzyk, Alexander Krause, Dirk
Habich, and Wolfgang Lehner. 2020. MorphStore: Analytical Query Engine
with a Holistic Compression-Enabled Processing Model. In PVLDB, Vol. 13.
2396–2410. https://doi.org/10.14778/3407790.3407833

[30] J. L. Dawson. 1974. Suffic Removal for Word Conflation. In ALLC Bulletin, Vol. 2.
33–46. https://sigir.org/files/museum/pub-21/98.pdf

[31] Rajat De and Dominik Kempa. 2024. Grammar Boosting: A New Technique
for Proving Lower Bounds for Computation over Compressed Data. In SODA.
3376–3392. https://doi.org/10.1137/1.9781611977912.121

[32] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data pro-
cessing on large clusters. Commun. ACM 51, 1 (jan 2008), 107–113. https:
//doi.org/10.1145/1327452.1327492

[33] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael
Stonebraker, Ahmed K. Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad
Ouzzani, and Nan Tang. 2017. The Data Civilizer System. In CIDR. http:
//cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf

[34] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and
Berthold Reinwald. 2016. Compressed Linear Algebra for Large-Scale Machine
Learning. In PVLDB, Vol. 9. 960–971. https://doi.org/10.14778/2994509.2994515

[35] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and
Berthold Reinwald. 2018. Compressed Linear Algebra for Large-Scale Ma-
chine Learning. In VLDB J., Vol. 27. 719–744. https://doi.org/10.1007/s00778-
017-0478-1

[36] Facebook. 2023. Zstandard. https://facebook.github.io/zstd/.
[37] Paolo Ferragina, Giovanni Manzini, Travis Gagie, Dominik Köppl, Gonzalo

Navarro, Manuel Striani, and Francesco Tosoni. 2022. Improving matrix-vector
multiplication via lossless grammar-compressed matrices. In PVLDB, Vol. 15.
2175–2187. https://doi.org/10.14778/3547305.3547321

[38] Bogdan Vladimir Ghita, Diego G. Tomé, and Peter A. Boncz. 2020. White-box
Compression: Learning and Exploiting Compact Table Representations. In CIDR.
https://api.semanticscholar.org/CorpusID:210706292

[39] GOOGLE. 2023. Snappy: A compression/decompression library Version 1.1.10.3.
https://google.github.io/snappy/.

[40] Stefan Grafberger, Paul Groth, and Sebastian Schelter. 2023. Automating and Op-
timizing Data-Centric What-If Analyses on Native Machine Learning Pipelines.
PACMOD 1, 2 (2023), 128:1–128:26. https://doi.org/10.1145/3589273

[41] The HDF Group. 2023. The HDF5 Library and File Format. https://www.
hdfgroup.org/solutions/hdf5/.

[42] Dirk Habich, Patrick Damme, Annett Ungethüm, Johannes Pietrzyk, Alexander
Krause, Juliana Hildebrandt, and Wolfgang Lehner. 2019. MorphStore - In-
Memory Query Processing Based on Morphing Compressed Intermediates
LIVE. In SIGMOD. 1917–1920. https://doi.org/10.1145/3299869.3320234

[43] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap. 2012.
Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-
Memory Column-Stores. In PVLDB. https://doi.org/10.14778/2168651.2168652

[44] Geoffrey E Hinton and Sam Roweis. 2002. Stochastic Neighbor Embed-
ding. In NeurIPS. https://proceedings.neurips.cc/paper_files/paper/2002/file/
6150ccc6069bea6b5716254057a194ef-Paper.pdf

[45] Mark Horowitz. 2014. Computing’s energy problem (and what we can do about
it). In ISSCC. https://doi.org/10.1109/ISSCC.2014.6757323

[46] Itay Hubara et al. 2018. Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations. In JMLR, Vol. 18. 1–30. http:
//jmlr.org/papers/v18/16-456.html

[47] Stratos Idreos, Martin L. Kersten, and StefanManegold. 2007. Database Cracking.
In CIDR. 68–78. http://cidrdb.org/cidr2007/papers/cidr07p07.pdf

[48] Stratos Idreos, Martin L. Kersten, and StefanManegold. 2007. Updating a cracked
database. In SIGMOD. 413–424. https://doi.org/10.1145/1247480.1247527

[49] Stratos Idreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe. 2011.
MergingWhat’s Cracked, CrackingWhat’s Merged: Adaptive Indexing in Main-
Memory Column-Stores. In PVLDB. https://doi.org/10.14778/2002938.2002944

[50] IEEE. 2008. Standard for Floating-Point Arithmetic. , 70 pages. https://doi.org/
10.1109/IEEESTD.2008.4610935

[51] Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace Fan, Xiran
Shi, and Ugur Cetintemel. 2020. DeepSqueeze: Deep Semantic Compression for
Tabular Data. In SIGMOD. 1733–1746. https://doi.org/10.1145/3318464.3389734

[52] Intel. 2023. Math Kernel Liberary. https://software.intel.com/en-us/intel-mkl/.
[53] Olivier Chapelle Jean-Baptiste Tien, joycenv. 2014. Display Advertising Chal-

lenge. https://kaggle.com/competitions/criteo-display-ad-challenge Data:
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/.

[54] Dhiraj Kalamkar et al. 2019. A Study of BFLOAT16 for Deep Learning Training.
arXiv:1905.12322 [cs.LG]

[55] Vasileios Karakasis, Theodoros Gkountouvas, Kornilios Kourtis, Georgios I.
Goumas, and Nectarios Koziris. 2013. An Extended Compression Format for
the Optimization of Sparse Matrix-Vector Multiplication. In IEEE TPDS, Vol. 24.
1930–1940. https://doi.org/10.1109/TPDS.2012.290

[56] Mahmoud Abo Khamis, Hung Q. Ngo, Xuanlong Nguyen, Dan Olteanu, et al.
2020. Learning Models over Relational Data Using Sparse Tensors and Func-
tional Dependencies. In TODS, Vol. 45. Article 7. https://doi.org/10.1145/

13

https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/1142473.1142548
https://dl.acm.org/doi/10.5555/2602024
https://www.tensorflow.org/
https://proceedings.neurips.cc/paper_files/paper/2020/file/645e6bfdd05d1a69c5e47b20f0a91d46-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/645e6bfdd05d1a69c5e47b20f0a91d46-Paper.pdf
https://doi.org/10.1145/3626717
https://api.semanticscholar.org/CorpusID:13812735
https://doi.org/10.1145/3519939.3523442
https://doi.org/10.1145/3519939.3523442
https://cs.uwaterloo.ca/~y328yu/classics/kernel.pdf
https://cs.uwaterloo.ca/~y328yu/classics/kernel.pdf
https://doi.org/10.1109/ICDE.1996.492216
https://vincentarelbundock.github.io/Rdatasets
https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/carData/Salaries.csv
https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/carData/Salaries.csv
https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1109/TSE.1985.231852
https://doi.org/10.1109/TSE.1985.231852
https://doi.org/10.1145/3588682
https://doi.org/10.1145/3588682
https://doi.org/10.24432/C5XW20
https://doi.org/10.14778/3007263.3007279
https://api.semanticscholar.org/CorpusID:202230751
https://api.semanticscholar.org/CorpusID:202230751
https://doi.org/10.14778/3503585.3503588
https://doi.org/10.14778/3503585.3503588
https://api.semanticscholar.org/CorpusID:81989532
https://api.semanticscholar.org/CorpusID:81989532
https://doi.org/10.14778/3407790.3407851
https://cloud.google.com/tpu/docs/bfloat16
https://doi.org/10.1145/3464509.3464885
https://parquet.apache.org/
https://arrow.apache.org/
https://arrow.apache.org/docs/java/vector.html#dictionary-encoding
https://arrow.apache.org/docs/java/vector.html#dictionary-encoding
https://doi.org/10.5441/002%2Fedbt.2017.08
https://doi.org/10.1145/3323991
https://doi.org/10.14778/3407790.3407833
https://sigir.org/files/museum/pub-21/98.pdf
https://doi.org/10.1137/1.9781611977912.121
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf
https://doi.org/10.14778/2994509.2994515
https://doi.org/10.1007/s00778-017-0478-1
https://doi.org/10.1007/s00778-017-0478-1
https://facebook.github.io/zstd/
https://doi.org/10.14778/3547305.3547321
https://api.semanticscholar.org/CorpusID:210706292
https://google.github.io/snappy/
https://doi.org/10.1145/3589273
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://doi.org/10.1145/3299869.3320234
https://doi.org/10.14778/2168651.2168652
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://doi.org/10.1109/ISSCC.2014.6757323
http://jmlr.org/papers/v18/16-456.html
http://jmlr.org/papers/v18/16-456.html
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.1145/1247480.1247527
https://doi.org/10.14778/2002938.2002944
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1145/3318464.3389734
https://software.intel.com/en-us/intel-mkl/
https://kaggle.com/competitions/criteo-display-ad-challenge
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://arxiv.org/abs/1905.12322
https://doi.org/10.1109/TPDS.2012.290
https://doi.org/10.1145/3375661

3375661
[57] Hideaki Kimura, Vivek Narasayya, et al. 2011. Compression aware physical

database design. In PVLDB. https://doi.org/10.14778/2021017.2021023
[58] Urs Köster et al. 2017. Flexpoint: An Adaptive Numerical Format for Efficient

Training of Deep Neural Networks. In NeurIPS. https://proceedings.neurips.cc/
paper/2017/hash/a0160709701140704575d499c997b6ca-Abstract.html

[59] Kornilios Kourtis, Georgios I. Goumas, and Nectarios Koziris. 2008. Optimizing
sparse matrix-vector multiplication using index and value compression. In CF.
87–96. https://doi.org/10.1145/1366230.1366244

[60] Alex Krizhevsky et al. 2012. ImageNet Classification with Deep Convolutional
Neural Networks. In NeurIPS. https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[61] Arun Kumar et al. 2015. Learning Generalized Linear Models Over Normalized
Data. In SIGMOD. 16. https://doi.org/10.1145/2723372.2723713

[62] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: Efficient Columnar Compression for Data Lakes. In PACMMOD,
Vol. 1. Article 118. https://doi.org/10.1145/3589263

[63] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neu-
mann, and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage using both Vectorization and Compilation. In SIGMOD.
311–326. https://doi.org/10.1145/2882903.2882925

[64] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s
Law. arXiv:2002.11054 [cs.PL] https://arxiv.org/abs/2002.11054

[65] Daniel Lemire. 2021. Number parsing at a gigabyte per second. In Software:
Practice and Experience, Vol. 51. 1700–1727. https://doi.org/10.1002/spe.2984

[66] Daniel Lemire and Boytsov Boytsov. 2015. Decoding billions of integers per
second through vectorization. Softw. Pract. Exp. https://doi.org/10.1002/spe.2203

[67] Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, et al. 2019. Tuple-oriented
Compression for Large-scale Mini-batch Stochastic Gradient Descent. In SIG-
MOD. 1517–1534. https://doi.org/10.1145/3299869.3300070

[68] Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, et al. 2019. Tuple-
Oriented Compression for Large-Scale Mini-Batch Stochastic Gradient Descent.
In SIGMOD. 1517–1534. https://doi.org/10.1145/3299869.3300070

[69] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: Efficient Lossless Floating Point Compression for Time Series Databases.
In PVLDB. 3058–3070. https://doi.org/10.14778/3551793.3551852

[70] Jie Liu, Zhongyuan Zhao, Zijian Ding, Benjamin Brock, Hongbo Rong, and
Zhiru Zhang. 2024. UniSparse: An Intermediate Language for General Sparse
Format Customization. Proc. ACM Program. Lang. 8, OOPSLA1, Article 99 (April
2024), 29 pages. https://doi.org/10.1145/3649816

[71] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, et al.
2018. Advances in Pre-Training Distributed Word Representations. In LREC.

[72] Anna Montoya, inversion, KirillOdintsov, and Martin Kotek. 2018. Home Credit
Default Risk. https://kaggle.com/competitions/home-credit-default-risk

[73] Ingo Müller, Cornelius Ratsch, and Franz Färber. 2014. Adaptive String Dictio-
nary Compression in In-Memory Column-Store Database Systems. In EDBT.
https://api.semanticscholar.org/CorpusID:8114547

[74] Adel Noureddine. 2022. PowerJoular and JoularJX: Multi-Platform Software
Power Monitoring Tools. In IE2022.

[75] NVIDIA. 2020. A100 Tensor Core GPU Architecture. images.nvidia.com/aem-
dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf.

[76] NVIDIA. 2023. CUDA Sparse Matrix lib. https://docs.nvidia.com/cuda/
cusparse/.

[77] Dan Olteanu. 2020. The relational data borg is learning. In PVLDB, Vol. 13.
3502–3515. https://doi.org/10.14778/3415478.3415572

[78] Yongjoo Park, Jingyi Qing, Xiaoyang Shen, and Barzan Mozafari. 2019. BlinkML:
Efficient Maximum Likelihood Estimation with Probabilistic Guarantees. In
SIGMOD. 1135–1152. https://doi.org/10.1145/3299869.3300077

[79] Ismail Parsa. 1998. KDD Cup 1998 Data. UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C5401H.

[80] Arnab K. Paul, Jong Youl Choi, Ahmad Maroof Karimi, and Feiyi Wang. 2022.
Machine Learning Assisted HPC Workload Trace Generation for Leadership
Scale Storage Systems. In HPDC. https://doi.org/10.1145/3502181.3531457

[81] Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems of points
in space. In The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, Vol. 2. 559–572. https://doi.org/10.1080/14786440109462720

[82] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al.
2011. Scikit-learn: Machine Learning in Python. JMLR 12 (2011), 2825–2830.

[83] Tuomas Pelkonen et al. 2015. Gorilla: a fast, scalable, in-memory time series data-
base. In PVLDB, Vol. 8. 1816–1827. https://doi.org/10.14778/2824032.2824078

[84] Arnab Phani, Lukas Erlbacher, and Matthias Boehm. 2022. UPLIFT: Paralleliza-
tion Strategies for Feature Transformations in Machine Learning Workloads. In
PVLDB, Vol. 15. https://doi.org/10.14778/3551793.3551842

[85] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-
grained Lineage Tracing and Reuse in Machine Learning Systems. In SIGMOD.

1426–1439. https://doi.org/10.1145/3448016.3452788
[86] Mercedes Piedra et al. 2019. Santander Customer Transaction Prediction. https:

//kaggle.com/competitions/santander-customer-transaction-prediction
[87] Holger Pirk, Eleni Petraki, Stratos Idreos, Stefan Manegold, and Martin L. Ker-

sten. 2014. Database cracking: fancy scan, not poor man’s sort!. In DaMoN.
4:1–4:8. https://doi.org/10.1145/2619228.2619232

[88] P. Ratanaworabhan et al. 2006. Fast lossless compression of scientific floating-
point data. In DCC. 133–142. https://doi.org/10.1109/DCC.2006.35

[89] Alexander Ratner et al. 2017. Snorkel: rapid training data creation with weak
supervision. In PVLDB, Vol. 11. https://doi.org/10.14778/3157794.3157797

[90] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christo-
pher Ré. 2016. Data programming: Creating large training sets, quickly. In
NeurIPS, Vol. 29. https://proceedings.neurips.cc/paper_files/paper/2016/file/
6709e8d64a5f47269ed5cea9f625f7ab-Paper.pdf

[91] Walter Reade. 2019. Categorical Feature Encoding Challenge. https://kaggle.
com/competitions/cat-in-the-dat

[92] Yousef Saad. 1990. SPARSKIT: a basic tool kit for sparse matrix computations -
Version 2. https://api.semanticscholar.org/CorpusID:207974787

[93] Ricardo Salazar, Felix Neutatz, and Ziawasch Abedjan. 2021. Automated Feature
Engineering for Algorithmic Fairness. PVLDB 14, 9 (2021), 1694–1702. https:
//doi.org/10.14778/3461535.3463474

[94] Sebastian Schelter et al. 2018. Automating Large-Scale Data Quality Verification.
PVLDB 11, 12 (2018), 1781–1794. https://doi.org/10.14778/3229863.3229867

[95] Maximilian Schleich et al. 2016. Learning Linear Regression Models over
Factorized Joins. In SIGMOD. 16. https://doi.org/10.1145/2882903.2882939

[96] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic
gradient descent and its application to data-parallel distributed training of
speech DNNs. In INTERSPEECH. 1058–1062. http://www.isca-speech.org/
archive/interspeech_2014/i14_1058.html

[97] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga,
et al. 2016. Clay: Fine-Grained Adaptive Partitioning for General Database
Schemas. In PVLDB, Vol. 10. https://doi.org/10.14778/3025111.3025125

[98] Shafaq Siddiqi et al. 2023. SAGA: A Scalable Framework for Optimizing Data
Cleaning Pipelines for Machine Learning Applications. PACMOD 1, 3 (2023),
218:1–218:26. https://doi.org/10.1145/3617338

[99] Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, Berthold Rein-
wald, and Peter J. Haas. 2019. MNC: Structure-Exploiting Sparsity Estimation for
Matrix Expressions. In SIGMOD. 17. https://doi.org/10.1145/3299869.3319854

[100] Mike Stonebraker et al. 2005. C-store: a column-oriented DBMS. In PVLDB.
553–564. https://dl.acm.org/doi/10.5555/1083592.1083658

[101] Michael Stonebraker, Paul Brown, et al. 2011. The architecture of SciDB. In
SSDBM. 1–16. https://dl.acm.org/doi/abs/10.5555/2032397.2032399

[102] Julia Stoyanovich, Serge Abiteboul, Bill Howe, H. V. Jagadish, and Sebastian
Schelter. 2022. Responsible data management. Commun. ACM 65, 6 (may 2022).
https://doi.org/10.1145/3488717

[103] Felipe Petroski Such et al. 2020. Generative Teaching Networks: Accelerating
Neural Architecture Search by Learning to Generate Synthetic Training Data.
In ICML, Vol. 119. 9206–9216. https://dl.acm.org/doi/10.5555/3524938.3525792

[104] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008.
ArnetMiner: Extraction and Mining of Academic Social Networks. In KDD’08.

[105] The pandas dev team. 2010. Pandas 2.1. https://doi.org/10.5281/zenodo.3509134
[106] Alessandro Ticchi et al. 2021. G-Research Crypto Forecasting. https://kaggle.

com/competitions/g-research-crypto-forecasting
[107] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and

Aleksander Madry. 2019. Robustness May Be at Odds with Accuracy. In ICLR.
https://openreview.net/forum?id=SyxAb30cY7

[108] John W. Tukey. 1962. The Future of Data Analysis. The Annals of Mathematical
Statistics 33, 1 (1962), 1 – 67. https://doi.org/10.1214/aoms/1177704711

[109] Stef van Buuren and Karin Groothuis-Oudshoorn. 2011. mice: Multivariate
Imputation by Chained Equations in R. Journal of Statistical Software 45, 3
(2011), 1–67. https://doi.org/10.18637/jss.v045.i03

[110] Ramakrishna Varadarajan, Vivek Bharathan, Ariel Cary, et al. 2014. DBDesigner:
A customizable physical design tool for Vertica Analytic Database. In ICDE.
1084–1095. https://doi.org/10.1109/ICDE.2014.6816725

[111] Paroma Varma and Christopher Ré. 2018. Snuba: automating weak supervision
to label training data. In PVLDB. https://doi.org/10.14778/3291264.3291268

[112] R. Vink and C. Peters. 2020. Polars: DataFrames for the new era. https://pola.rs/
[113] Maggie Demkin Walter Reade. 2019. Categorical Feature Encoding Challenge

II. https://kaggle.com/competitions/cat-in-the-dat-ii
[114] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash

Gopalakrishnan. 2018. Training deep neural networks with 8-bit floating point
numbers. In NIPS. 7686–7695. https://dl.acm.org/doi/10.5555/3327757.3327866

[115] Till Westmann, Donald Kossmann, Sven Helmer, and Guido Moerkotte. 2000.
The implementation and performance of compressed databases. In SIGMOD,
Vol. 29. 55–67. https://doi.org/10.1145/362084.362137

[116] Lucas Wilkinson, Kazem Cheshmi, and Maryam Mehri Dehnavi. 2023. Register
Tiling for Unstructured Sparsity in Neural Network Inference. PLDI 7, Article
188 (2023). https://doi.org/10.1145/3591302

14

https://doi.org/10.1145/3375661
https://doi.org/10.14778/2021017.2021023
https://proceedings.neurips.cc/paper/2017/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://doi.org/10.1145/1366230.1366244
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1145/2723372.2723713
https://doi.org/10.1145/3589263
https://doi.org/10.1145/2882903.2882925
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.11054
https://doi.org/10.1002/spe.2984
https://doi.org/10.1002/spe.2203
https://doi.org/10.1145/3299869.3300070
https://doi.org/10.1145/3299869.3300070
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.1145/3649816
https://kaggle.com/competitions/home-credit-default-risk
https://api.semanticscholar.org/CorpusID:8114547
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/cusparse/
https://docs.nvidia.com/cuda/cusparse/
https://doi.org/10.14778/3415478.3415572
https://doi.org/10.1145/3299869.3300077
https://doi.org/10.24432/C5401H
https://doi.org/10.1145/3502181.3531457
https://doi.org/10.1080/14786440109462720
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/3551793.3551842
https://doi.org/10.1145/3448016.3452788
https://kaggle.com/competitions/santander-customer-transaction-prediction
https://kaggle.com/competitions/santander-customer-transaction-prediction
https://doi.org/10.1145/2619228.2619232
https://doi.org/10.1109/DCC.2006.35
https://doi.org/10.14778/3157794.3157797
https://proceedings.neurips.cc/paper_files/paper/2016/file/6709e8d64a5f47269ed5cea9f625f7ab-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/6709e8d64a5f47269ed5cea9f625f7ab-Paper.pdf
https://kaggle.com/competitions/cat-in-the-dat
https://kaggle.com/competitions/cat-in-the-dat
https://api.semanticscholar.org/CorpusID:207974787
https://doi.org/10.14778/3461535.3463474
https://doi.org/10.14778/3461535.3463474
https://doi.org/10.14778/3229863.3229867
https://doi.org/10.1145/2882903.2882939
http://www.isca-speech.org/archive/interspeech_2014/i14_1058.html
http://www.isca-speech.org/archive/interspeech_2014/i14_1058.html
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.1145/3617338
https://doi.org/10.1145/3299869.3319854
https://dl.acm.org/doi/10.5555/1083592.1083658
https://dl.acm.org/doi/abs/10.5555/2032397.2032399
https://doi.org/10.1145/3488717
https://dl.acm.org/doi/10.5555/3524938.3525792
https://doi.org/10.5281/zenodo.3509134
https://kaggle.com/competitions/g-research-crypto-forecasting
https://kaggle.com/competitions/g-research-crypto-forecasting
https://openreview.net/forum?id=SyxAb30cY7
https://doi.org/10.1214/aoms/1177704711
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1109/ICDE.2014.6816725
https://doi.org/10.14778/3291264.3291268
https://pola.rs/
https://kaggle.com/competitions/cat-in-the-dat-ii
https://dl.acm.org/doi/10.5555/3327757.3327866
https://doi.org/10.1145/362084.362137
https://doi.org/10.1145/3591302

[117] Jaeyeon Won, Charith Mendis, Joel S. Emer, and Saman Amarasinghe. 2023.
WACO: Learning Workload-Aware Co-optimization of the Format and Sched-
ule of a Sparse Tensor Program. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). As-
sociation for Computing Machinery, New York, NY, USA, 920–934. https:
//doi.org/10.1145/3575693.3575742

[118] Lianghong Xu, Andrew Pavlo, Sudipta Sengupta, and Gregory R. Ganger. 2017.
Online Deduplication for Databases. In SIGMOD. 1355–1368. https://doi.org/
10.1145/3035918.3035938

[119] Huanrui Yang, Wei Wen, and Hai Li. 2020. DeepHoyer: Learning Sparser
Neural Network with Differentiable Scale-Invariant Sparsity Measures. In ICLR.
https://openreview.net/forum?id=rylBK34FDS

[120] Dongqing Zhang et al. 2018. LQ-Nets: LearnedQuantization for Highly Accurate
and Compact Deep Neural Networks. In ECCV. arXiv:1807.10029

[121] Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad. 2024. Compilation ofModular
and General Sparse Workspaces. Proc. ACM Program. Lang. 8, PLDI, Article 196
(June 2024), 26 pages. https://doi.org/10.1145/3656426

[122] Hantian Zhang et al. 2017. ZipML: training linear models with end-to-end
low precision, and a little bit of deep learning. In ICML. 4035–4043. https:
//dl.acm.org/doi/10.5555/3305890.3306098

[123] Jiujing Zhang et al. 2023. High-Ratio Compression for Machine-Generated Data.
In PACMMOD, Vol. 1. Article 245. https://doi.org/10.1145/3626732

[124] M. Zukowski, S. Heman, N. Nes, and P. Boncz. 2006. Super-Scalar RAM-CPU
Cache Compression. In ICDE. 59–59. https://doi.org/10.1109/ICDE.2006.150

15

https://doi.org/10.1145/3575693.3575742
https://doi.org/10.1145/3575693.3575742
https://doi.org/10.1145/3035918.3035938
https://doi.org/10.1145/3035918.3035938
https://openreview.net/forum?id=rylBK34FDS
https://arxiv.org/abs/1807.10029
https://doi.org/10.1145/3656426
https://dl.acm.org/doi/10.5555/3305890.3306098
https://dl.acm.org/doi/10.5555/3305890.3306098
https://doi.org/10.1145/3626732
https://doi.org/10.1109/ICDE.2006.150

	Abstract
	1 Introduction
	2 Exploitable Redundancy
	2.1 Distinct Values
	2.2 Lossy Transformations
	2.3 Non-numerical Data
	2.4 Correlation
	2.5 Pre-processing Time

	3 Compressed Data Preparation
	3.1 Compressed Frame Design
	3.2 Compressed Feature Transformations
	3.3 Compressed Feature Engineering

	4 Morphing
	5 Compressed I/O
	6 Compiler and Runtime Integration
	7 Compressed Operations
	8 Experiments
	8.1 Experimental Setting
	8.2 Frame Compression and I/O
	8.3 Compressed Feature Transformations
	8.4 Compressed Word Embeddings
	8.5 ML Algorithm Performance
	8.6 Data-centric ML Pipeline
	8.7 Comparisons with Other Systems

	9 Related Work
	10 Conclusions
	Acknowledgments
	References

