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Abstract
This project describes an implementation of an Automatic Speech Recognition
(ASR) system converting speech to text. It extracts Mel features, Log Mel
features, and Mel-Frequency Cepstral Coefficients (MFCC) from sound and
use them to train an Acoustic Model (AM) Deep Neural Network (DNN). The
models are trained on two different hardware systems with four GPUs. The
training process is benchmarked and optimized. Evaluation of the through-
put, latency, and accuracy of the models is done and compared to other ASR
systems. The best model implemented has a Word Error Rate (WER) of 10.5
and a latency shorter than the duration of the input making it appropriate
for real-time applications.
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1 | Introduction

Speech is one of the most prevalent ways of commu-
nicating among humans. It is a fast and convenient
way to convey information from one person to another
and technology to transmit it such as telephones and
radio has been developed long ago. The technology has
greatly influenced how people communicate providing
immense value all over the world. The widespread
use has also posed challenges in how to interpret,
store and search speech data in computer systems.
The challenges have given rise to the research area of
Automatic Speech Recognition (ASR) that tries to improve
the human-computer and human-human interactions
by developing computer systems that automatically
recognize speech and infer meaning from it [YD15, p.
1].

ASR has been a research area a long time and the
recent years’ computational power improvements have
strengthened the academic interest in the area. This
have lead to the great increase of mobile devices with
virtual assistant systems using ASR. Mobile devices
and virtual assistants such as Amazon’s Alexa [Ama],
Apple’s Siri [App], Microsoft’s Cortana [Mic] and
Google Assistant [Goo] use ASR for voice search,
message dictation and a range of other daily tasks. This
type of ASR can be handled locally on the device with
compressed low-latency models built for instance with
TensorFlow Lite [Ten19a] [ZK18, pp. 34-35].

Another type of ASR system take a centralized
approach to ASR, where speech is converted to text on a
server. The text can then be retrieved and analyzed later.
This type of system is relevant in most organizations
dealing with large amounts of speech such as hospitals,
where medical records are dictated by doctors [Joh+14],
and call-centers, where customer data needs to be easily
accessible to improve customer service [Mis+05].

A benefit of such centralized systems is the larger
capacity to compute the results utilizing hardware ac-
celeration. Most calculations in neural network models
are small and independent, hence a significant perfor-

mance improvement can be achieved by parallelizing
the systems on specialized multithreaded hardware
such as GPUs [SBS05; RMN09].

When a machine learning model is deployed in a cen-
tralized server, new challenges of processing incoming
requests arise. The system should be able to handle a
large number of concurrent requests with an acceptable
latency and be able to handle more concurrent requests
when adding new or more hardware resources. The abil-
ity to handle a large number of concurrent requests with
an acceptable latency is referred to as scalability in this
project.

In the cross field of hardware acceleration and ASR,
this master’s thesis has the research question:

How do we implement and efficiently train a centralized
deep learning system converting speech to text in a scalable
manner?

A source of inspiration for the system is the two
ASR models developed by the Baidu Research group,
Deep Speech 1 [Han+14] and Deep Speech 2 [Amo+15],
and later the unpublished model called Streaming
Multi-Layer Truncated Attention Model (SMLTA) [Gro19]
also by the Baidu Research group. Other ASR systems
are also investigated during the project, such as Cold
Fusion [Sri+17], Listen, Attend and Spell (LAS) [Cha+15],
Unidirectional LAS [Chi+17], Hard Monotonic Attention
[Raf+17] and many more.

Using the TensorFlow framework in Python, a
number of different deep learning models inspired by
Deep Speech 2 [Amo+15] are implemented and trained
using two different GPU clusters. The performance
of the cluster is important when training the models
since it requires an extensive amount of computation
to train. For this reason, performance benchmarks
are conducted and the system adjusted accordingly to
reduce the amount of training time.

When a model has been trained, it is served using
TensorFlow Serving [Ten19b] and evaluated based on
latency, throughput and output quality of the served

1
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model.
This thesis starts with a background chapter 2 describ-

ing the basics of ASR technology and the TensorFlow
framework. Chapter 3 describe related work in the field
of ASR and mention background papers on GPU neu-
ral networks training as well as GPU systems available.
Chapter 4 describes the implementation of the system
in TensorFlow and how the models are served. It also
cover the data used for training and performance eval-
uation as well as the system’s hardware configurations.
Chapter 5 shows the performance of different models
during training on the GPUs measuring how the differ-
ent configurations are affected by different hyper param-
eters. Chapter 6 shows the results of the trained models
based on the latency, throughput and quality of the in-
ferences. Chapter 7 mentions further work that could be
done to improve the system. Finally, chapter 8 provides
a summary and conclusion of the entire thesis.



2 | Background

This chapter describes the theory involved in build-
ing a modern neural network based automatic speech
recognition system. First, the fundamentals of digital
sound is described to enable extraction of features from
sound. Then the deep learning theory involved in the
system is explained from the basics of Feed Forward
Neural Networks (FFNN) to Convolutional Neural
Networks (CNN) and Recurrent Neural Networks
(RNN). Optimization algorithms for training the model
are also explained including Stochastic Gradient De-
scent (SDG), AdaGrad and AdaDelta. Additionally,
Activation Functions, Back-Propagation, Batching and
Regularisation are explained. The end of the chapter
has a brief description of TensorFlow, which is the
framework used for this project. All theory is explained
to construct models for converting sound to text in
this project. Section 1, section 2 and section 3 has been
adapted from our Thesis Preparation report [WB18].

1 Analog & Digital Sound

Speech is a specific type of sound. Sound is created
from everything that moves by pushing and pulling air,
or any other matter, causing pressure variations. Those
pressure variations can be called sound waves. Waves
can be represented as a continuous oscillating function
which is also called an analog function or an analog signal.
Sound represented like this can be called analog sound.

Analog sound can be converted to digital sound
through an Analog to Digital Converter (ADC) [Bur+11].

Digital sound is the quantization of an analog sound
that takes discrete measurements of the sound wave.
The frequency at which the samples are taken is
called the sampling frequency or sampling rate which is
measured in Hertz (Hz) [KS16, p 38].

The Nyquist-Shannon sampling theorem states that
to capture a frequency the sampling rate must be
double that frequency. This means that if the sampling
frequency is fsample then the maximum sound frequency

that is captured is 1
2 ∗ fsample [Bur+11, Section 2.3] [KS16,

p 38].
The sampling frequency of CD’s are usually 44,100 Hz

which results in a maximum captured sound frequency
of 22,050 Hz. The human ear is only able to capture fre-
quencies of up to around 20,000 Hz while young, hence
the sampling frequency of CD’s makes it possible to cap-
ture all sound that humans are able to hear [Bur+11, Sec-
tion 2.3]. The sampling frequency of phone conversa-
tions over the DS0 and E0 network is 8,000 Hz resulting
in a maximum captured sound frequency of 4,000 Hz
which is sufficient for oral communication among hu-
mans, but is also the reason why people sound different
on the phone [ITU88].

When constructing this digital sound, a low-pass filter
that only allows frequencies below a given threshold
is used at half the sampling rate (adhering to the
Nyquist-Shannon sampling theorem) to avoid aliasing.
Aliasing is when high frequencies are sampled as lower
frequencies which impairs the quality of the sampled
sound [Gal15] [Bur+11, Section 2.3].

Microphones capture all sound, and are therefore sus-
ceptible to noise from the background. This can be re-
duced using noise cancellation algorithms such as for
instance Power Level Difference (PLD) that given two
microphones on a mobile phone, in which one is used
for speech, cancels out the other microphone’s observed
signals [Zha+]. More advanced algorithms are able to
cancel out more noise and the algorithms keep improv-
ing. They are applied in most modern phones [Tri17].

2 Speech Properties

Multiple properties of speech define the difficulty of
transferring the speech to text. Here are the three
main properties as defined in “A Review on Speech
Recognition Challenges and Approaches” by Vimala
and Dr. Radha [VD12]:

3
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Types of Speech Utterance How are the words ut-
tered?

Isolated words, takes only a single utterance at a time
which requires a pause between each utterance; con-
nected words, allow some utterances to be connected
which means there are only short pauses between
the utterances; continuous speech, where the speaker
can speak almost naturally; and spontaneous speech,
where the system should be able to handle all natu-
ral speech including false-starts and mispronuncia-
tions.

Speaker Model Who’s speech is the system able to un-
derstand?

The speaker model is important for understanding
the spoken word. The extremes are speaker inde-
pendent, where the algorithm is independent of
who and where the speaker is. The other extreme
is speaker dependent, where it requires a specific
speaker and a specific setting.

Vocabulary How many different words and phrases do
the system know?

The size of vocabulary is important when convert-
ing speech to text. Small vocabularies such as digits
to text are easier than larger vocabulary sizes. Out-
of-vocabulary, is when the system needs to map un-
known words, and is a difficult challenge.

The ideal system would be able to in real-time
recognize with 100% accuracy all words spoken by any
person, independent of vocabulary size, noise, speaker
characteristics or accent [YD15, p. 5]. All speech
datasets can be characterized on a scale as in fig. 2.1.

3 Fundamentals of ASR

This section describes the fundamental components of
ASR systems. The basic components are Feature Extrac-
tion (FE), Acoustic Model (AM) and Language Model (LM)
[YD15, p. 4]. Each of these components have a sepa-
rate purpose in the ASR system, however an ASR sys-
tem is not required to include all the components sepa-
rately. Recent research has moved towards end-to-end
ASR models based on deep learning [Han+14; Amo+15;
Cha+15; Bat+17; GSW19], which is described in chap-
ter 3.

This related work use some variation of FE based on
the same techniques described in this report, but they

Single
Word

Out-of-
Vocabulary

Vocabulary
Large

 Vocabulary

Speaker
Dependent

Speaker
Independent

Speaker Model

Connected
Words

Isolated
Words

Spontaneous 
Speech 

Utterance
Continuous

Speech 

Figure 2.1: Speech Properties.

do not cover it in depth. The main argument against the
FE used in this report and many other similar systems is
that they fundamentally only rely on an analysis of the
frequencies in the sound [Lyo17, pp. 13 + 16-18].

3.1 Feature Extraction

To enable ASR we need to extract features from sound.
This is referred to as Feature Extraction (FE). A lot of
different features can be extracted from both the time
domain and the frequency domain, such as Amplitude,
Root-Mean-Square Energy, Zero-Crossing rate, Band
Energy Ratio, Spectral Centroid, Bandwidth and Spec-
tral Flux [KS16, p 40 - 50]. In our case we only use
the Amplitude but there are potential benefits from
merging features with some of the other types.

Time domain is a representation of sound with the am-
plitude over time which in graph representation is time
on one axis and amplitude on the other axis. This is
shown in the top graph of fig. 2.2. Frequency domain is
a representation of sound with intensity over different
frequencies for a given time interval which in graph rep-
resentation has frequencies on one axis and intensity on
the other axis [Bur+11, Section 3.1] [Lyo17, p. 16]. This
is shown in the second graph of fig. 2.2.

Fourier Transformation

To move sound from the time domain into the frequency
domain, Fourier Transformations (FT) and framing is ap-
plied. Any frame of sound can be approximated using a
Fourier Series as defined in the following equation:
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f (x) = a0 +
∞

∑
n=1

(an cos(n x) + bn sin(n x)) (2.1)

It states that the sound wave in a frame can be
described with an infinite sum of cosine and sine
functions over input time x. The sum of functions can
be changed by adjusting the coefficients a0, an and
bn which are called the Fourier coefficients [Ste13]. FT
converts the signal from time domain into the frequency
domain by using the Fourier coefficients to produce
complex values for each frequency band representing
the magnitude of that frequency [JM09, p. 300].

When the input signal is discrete, as it is when work-
ing with digital audio, a Discrete Fourier Transform (DFT)
can be used to reduce the infinite limit of the FT [KS16,
p. 40]:

Xm =
K−1

∑
k=0

xk · e−
2·π·i

K ·k·m (2.2)

K is the number of samples in the frame, m is an
integer ranging from 0 to k − 1, xk is the amplitude of
the k’th sample of the given frame and Xm is a complex
number from which the frequency domain is obtained
by computing it over different time domain frequencies
[KS16, pp.40-41].

An algorithm to perform the DFT was developed by
Cooley and Tukey with a running time of O(K · log K).
This is commonly referred to as Fast Fourier Transform
(FFT) although several variants of FFT exist. The FFT
requires the number of samples in each frame K to be a
power of two.

When working with waves that have varying fre-
quencies over time, a Short-Time Fourier Transform
(STFT) [KS16, p. 41] is used. An STFT computes DFTs
over different frames of the input signal. The STFT
has a frame size, specifying the number of samples in
each frame, and a frame step, specifying the number of
samples between each frame. The frame step enables
each frame to overlap, to enable finer granularity in
the features extracted or make space between frames to
reduce the amount of calculations.

The DFT result of each frame constructed by the STFT
can be concatenated into a magnitude spectrogram [Lyo17,
p 15] that contains all FTs for all the frames on a timeline.
An example of a magnitude spectrogram can be seen in
the second figure from the top in fig. 2.2 with the title
"Frequency".

Mel-Frequency Cepstral Coefficients (MFCC)

Human hearing is not the same as the machine’s hear-
ing which is why there are multiple transformation func-
tions that transform the frequency domain into some-
thing that based on empirical studies simulates how hu-
mans perceive sounds. The two most well known ones
are the Bark and the Mel scales [KS16, p 53 - 56]

These scales enhance the frequencies that humans per-
ceive well. In our studies we are going to focus on and
use the Mel scale as seen in eq. (2.3) where m is the Mel-
frequency of Hertz-frequency f [KS16, p. 54].

m = 1127 · log
(

1 +
f

700

)
(2.3)

Furthermore if the logarithm is applied yet another
time to the Mel output it becomes Log Mel, and can be
seen in the fourth graph of fig. 2.2. The Log Mel result is
used to calculate the Mel-Frequency Cepstral Coefficients
(MFCC). It is a combination of converting the Hertz fre-
quencies to Mel frequencies, then to Log Mel and finally
applying another Discrete Cosine Transform (DCT). The
MFCC returns a number of Cepstral Coefficients that rep-
resent the sound in the given frame [KS16, p. 55].

Only the first 13 dimensions of the the MFCC is
used. The MFCC plot in fig. 2.2 is reduced to the 13
dimensions and have removed the first dimension.
The first dimension is removed from the plot because
its values have a much larger range than the other
dimensions making details in the plot almost invisible.
All 13 features are typically used as input.

3.2 Acoustic Model

An acoustic model (AM) takes as input the features of the
sound. These sound features could be the previously
mentioned Amplitude, Frequency, Mel, Log Mel or
MFCC, and outputs AM scores based on the relations
between acoustics and phonetics [YD15, p. 4]. This AM
score can subsequently be used in combination with the
Language Model (see subsection 3.3) to determine spo-
ken words. In this section, two different approaches to
constructing an AM are considered. The first approach,
called GMM-HMM, has been state-of-the-art through
the 90’s and 00’s, but it is now outperformed by Neural
Network-based approaches such as CD-DNN-HMM
[YD15, p. 5] [Sai+15] and the systems described in
chapter 3.
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Figure 2.2: Feature extraction of sound saying
"hello world".

GMM-HMM

GMM-HMM is an abbreviation of Gaussian Mixture
Model - Hidden Markov Model. It uses a GMM to rep-
resent distributions and a HMM to capture sequence
information [YD15, p. 19].

One of the challenges of using GMM as an acoustic
model has been the evaluation speed, the amount of
training data required to avoid overfitting and the
complex representation of otherwise simple systems
[YD15, pp. 19-20].

A Hidden Markov Model (HMM) can be used in
relation to the GMM to capture sequence information.
A HMM consists of states, distributions of the states and
probabilities of transitions between the states [Rab89;
RJ86].

The relation between the output sequence and
speech is that the states in a GMM-HMM are typically
associated with a part of a phone in speech. However,
GMM-HMM has a weakness of modeling speech
dynamics which (in spite of several extended HMMs) is
part of the reason that its success has been surpassed by
Neural Network-based methods [YD15, pp. 43-44].

Neural Network Methods

Several methods using Neural Networks have been in-
vented, one of the earliest being the DNN-HMM hybrid
system (DNN is an abbreviation of Deep Neural Net-
work).

DNN-HMM uses the DNN to calculate the prob-
abilities of the input features representing different
phones, hence each output neuron of the DNN would
represent a possible phone and the output value from
the neuron would represent the probability that the
given frame represents that phone. The output of the
DNN is given to the HMM to represent the dynamics
of the speech signal which is one of the disadvantages
of this model as it then has the same weaknesses of
modeling speech dynamics as described in the previous
subsection [YD15, pp. 99-100].

Other approaches combining DNN and HMM also
exist, such as Context Dependent-DNN-HMM (CD-
DNN-HMM) which takes several feature frames as
input and uses senones as output from the neural net-
work instead of monophones. A senone is a component
of a triphone which is a context-dependent description
of a monophone [CMU]. This means that using senones
as output of the DNN makes the representation of
sound more detailed. The use of the CD-DNN-HMM
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has three improvements over other models mentioned
earlier in this paper: (1) using deep neural networks, (2)
using long window frames instead of separate frames,
and (3) using senones as output instead of monophones
[YD15, p. 106]. The Word Error Rate (WER) is improved
in CD-DNN-HMM compared to GMM-HMM systems
according to several studies [YD15, p. 303].

3.3 Language Model
The acoustic model outputs an AM score which can be
combined with the Language Model (LM) to generate
an output word sequence [YD15, p. 4]. The LM calcu-
lates probabilities of which words are uttered next based
on prior words in a word sequence.

If we look at a sequence of n words as S = w1, ..., wn,
then there is an associated probability of that specific
sequence of words being: P(S) = P(w1, w2, ..., wn).
Applying the chain rule this becomes the probability
of the first word times the probability of the sec-
ond word given the first and so on, as in: P(S) =
P(w1)P(w2|w1)P(w3|w1, w2)...P(wn|w1, ..., wn−1).

The foundation of many language models is the
Markov assumption. This assumption says that an ap-
proximation of a probability can be given by observing
a limited number of previous observations K:

P(wn|w1, ..., wn−1) ≈ P(wn|wn−K+1, ..., wn−1) (2.4)

The LM can be constructed in several different ways.
In this section, we will go through N-Gram models and
an NN-based model.

N-Gram Language Models

In the N-Gram model, probabilities of sequences of
words are calculated based on a large corpora of text.
An n-gram is a a sequence of n words where n is an
integer. A 2-gram is called a bi-gram and a 3-gram
is called a tri-gram. If a word wi is predicted using
n-grams, the probability is calculated based on the
K = n− 1 preceding words as in Equation 2.4 [Spe15].

Neural Network Language Models

Another approach is using neural networks, usually in
the form of an RNN or an LSTM. By converting each
word to a vector of numbers called a word embedding,
the NNs can take the word embeddings as input and
be trained to output a probability distribution of the

next word in the given sequence of words. The neural
network approach is able to model a longer range
of dependencies compared to the classical statistical
approaches such as the N-Gram model [Koe16].

4 Deep Learning

An acoustic model can be built using concepts from
deep learning. The basic concepts are described in this
section, beginning with the different types of models
in section 4.1 followed by descriptions of different
activation functions used in the layers in section 4.2.
Back-propagation, loss functions, and batching are then
described in section 4.3, section 4.4, and section 4.5
respectively. Different algorithms for optimizing the
model are presented in section 4.6 and regularization
strategies for improving the generalization of a model
is defined in section 4.7.

4.1 Model

Deep Feed Forward Network

The basic type of deep learning model is a Deep Feed
Forward Network, which is also called Feed Forward Neu-
ral Network (FFNN) and Multilayer Perceptrons (MLPs)
[GBC16, p. 163]. We will refer to it as FFNN in this
report. An FFNN is composed of a number of different
functions which each represent a node in the network.
It can be seen as a directed acyclic graph where the
nodes are the functions and the output of each function
is a directed edge. The nodes are organized in layers
and by combining a large number of layers, the depth
of the network is increased. This depth of the network
is the origin of the term Deep Learning [GBC16, p. 164].

The first layer of an FFNN is called an input layer, the
final layer of the FFNN is called the output layer and the
other layers are called hidden layers. The hidden layers
consists of hidden units which accept a vector of inputs x
and compute an output h with the following:

h = g (Wx + b) (2.5)

W is a weight matrix also referred to as the kernel
and b is the bias. W and b are both initialized and
changed during training of the model. The initializa-
tion of W and b could be random, although this tend to
perform poorly in deep neural networks [GB10, p. 1].
Instead, a Xavier Initialization could be used. The Xavier
Initialization scales all gradients in all layers according
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to a uniform distribution within a range [GB10; Ten19q].
Training of models will be described in more detail in
section 4.6. The function g in eq. (2.5) is an element-wise
nonlinear function called an activation function which
will be described in section 4.2 [GBC16, p. 187].

The output of one layer becomes the input of the next
layer. Layer number l of an FFNN can be formally de-
fined as [GBC16, p. 191]:

h(l) = g(l)
(

W (l)x + b(l)
)

(2.6)

The next layer h(l+1) of the FFNN is then defined as:

h(l+1) = g(l+1)
(

W (l+1)h(l) + b(l+1)
)

(2.7)

It is most common for layers to be fully connected
which means that all hidden units in layer h(l) are
connected to all units in the next layer h(l+1). However,
it is also possible to have fewer connections so that only
a subset of units in h(l) are connected to a subset of
units in h(l+1). The decreased number of connections
decreases the parameter size and consequently the
computation required [GBC16, p. 196]. Layers are most
commonly connected in a chain so that layer h(l) are
connected to h(l+1) which are connected to h(l+2). It
is also possible to skip layers so that h(l) is connected
directly to h(l+2). This makes it easier for the gradients
to flow from the output layer to the input layer [GBC16,
p. 196]. Gradients will be described in section 4.3.

Convolutional Neural Network

A Convolutional Neural Network (CNN) is a special kind
of neural network based on a mathematical operation
called a convolution. The convolution operation is used
widely in signal processing [Wil18; Smi02], but the
convolution operation as used in signal processing and
pure mathematics does not correspond exactly to the
use in neural networks [GBC16, p. 321].

The convolution operation is of the form:

s(t) = (x ∗ w)(t) (2.8)

where s(t) is called the feature map, x is a function re-
ferred to as the input and w is the kernel [GBC16, p. 322].
A convolution "blends" the function x with the function
w with an integral that expresses the amount of overlap
of the two functions. The kernel w is in this way used
to smooth the function x over the time t by using the
function w [Wil18]:

s(t) =
∫ ∞

−∞
x(τ)w(t− τ)dτ (2.9)

By doing so, it is possible to create an output that for
a time t in the signal is determined by the part of the sig-
nal immediately surrounding t by designing w to weigh
the parts of the signal closer to t higher. This could for
instance be done if the function w is a Gaussian function
then the output will be based on the Gaussian distribu-
tion around t [Wil18].

When working with discrete signals, s(t) becomes a
sum of multiplications:

s(t) = (x ∗ w)(t) =
∞

∑
τ=−∞

x(τ)w(t− τ) (2.10)

where x and w are defined on discrete values. This
means that if the input x and the kernel w are two-
dimensional and discrete, then the convolution can be
defined as [GBC16, p. 323]:

S(i, j) = (W ∗ X)(i, j) = ∑
m

∑
n

X(i−m, j− n)W(m, n)

(2.11)
This can be perceived as a matrix multiplication if X

and W are matrices and this is exactly how it is used in
CNNs. The kernel is slided over the input and for each
step a matrix multiplication is performed. For instance
in fig. 2.3, convolutions are performed with a 3× 4 input
and a 2× 2 kernel producing a 2× 3 output.

The spatial size of the output of a CNN is given by
[Kar19]:

h(o)size =
W − F + 2P

S
+ 1 (2.12)

where W is the input size, F is the receptive field size,
S is the stride and P is the zero-padding. The units x(l)r in
one layer that is connected to a specific unit s(l+1)

r in the
next layer are referred to as the receptive field of s(l+1)

r .
An example of this is given in fig. 2.4 where x2, x3 and
x4 is the receptive field of s3.

The stride defines how many steps the kernel is
moved with each slide. Given a stride z, a convolution
with stride can be defined by extending eq. (2.11)
[GBC16, p. 338]:

S(i, j) = (W ∗ X)(i, j)

= ∑
m

∑
n

X(i−m× z, j− n× z)W(m, n) (2.13)
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Figure 2.3: An example of a 2-D convolution from
Goodfellow, Bengio, and Courville [GBC16].

Figure 2.4: Example of receptive field and con-
nectivity from Goodfellow, Bengio, and Courville
[GBC16].

A larger stride will decrease the output size according
to eq. (2.12).

The input can be padded with any number of zeros,
which is referred to as zero-padding. A zero-padding
enables the kernel to move to the edges of the input ma-
trix. Further it is used to control the spatial output size
as specified in eq. (2.12) [Kar19]. If zero-padding is not
used, the size of the next layer will be smaller than the
current layer [GBC16, p. 338]. This can also be seen in
fig. 2.3 where the size is decreased from 4× 3 to 3× 2.

CNNs have several advantages including sparse in-
teractions and parameter sharing. Sparse interactions
occur when the kernel is smaller than the input. With
fully connected layers of size m and n, algorithms per-
forming the matrix multiplications require m× n param-
eters whereas with only k connections this is reduced to
k× n [GBC16, p. 326]. The concept of parameter sharing
means that every weight in the kernel is reused several
times, one time for each element of the input except the
edge elements, which is in contract to the FFNN where
the weights in the weight matrix are only used once. A
lower number of weights reduces the running time of
the back-propagation because the back-propagation up-
dates all weights [GBC16, p. 328]. A reduced number of
weights leads to a reduced running time.

Recurrent Neural Network

A Recurrent Neural Network (RNN) is, in contrast to an
FFNN, a directed cyclic computational graph. An RNN
can take arbitrary length input sequences and apply the
same function to all elements of the sequence thereby
avoiding the need to train a separate model for all in-
put elements. This is another type of parameter sharing
which improves the efficiency of training the model.

An RNN takes a list of input vectors x1:n = x1, ..., xn
and generates a list of output vectors y1:n = y1, ..., yn
and state vectors s1:n = s1, ..., sn by recurrently applying
a function R on one of the input vectors xi and a pre-
vious state si−1 to obtain a state si on which a function
O is applied to produce an output vector yi. This is de-
scribed in eq. (2.14), where s0 is an initial state that can
be defined using the Xavier Initialization as described
in section 4.1.

RNN (s0, x1:n) = s1:n, y1:n
si = R (si−1, xi)
yi = O (si)

(2.14)

A visualization of a general RNN from Goldberg
[Gol16, pp. 46-47] [GH17, pp. 164-167] is seen in fig. 2.5.
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Figure 2.5: A visualization of an RNN node from
Goldberg [Gol16, p. 47] [GH17, p. 165].

The visualization shows the RNN as a box containing
two functions, R and O, which receives the input si−1
and produces the output si that recursively goes back
as input. The visualization could be unfolded, which
means that all elements of x1:n would be sent to separate
boxes and the output of the ith box would go to the
i + 1th box. Such a visualization would include the
entire computational graph, whereas the visualization
in fig. 2.5 is more succinct.

The function R that produces a state s typically has
the following structure [GBC16, p. 370]:

R (si−1, xi) = g1 (b + Wsi−1 + Uxi) (2.15)

where W and U are trainable weight matrices, b is a
trainable bias and g1 is an activation function.

The output function O that produces the output y typ-
ically has the following structure [GBC16, p. 370]:

O (si) = g2 (c + Vsi) (2.16)

where V is a trainable weight matrix, c is a trainable
bias and g2 is an optional activation function.

Bidirectional RNN

The output si of an RNN depends on the input x1:i mean-
ing that it only captures information from past values.
Sometimes it is beneficial to generate output based not
only on the past values but the entire sequence of in-
put data, including the future input sequence [GBC16, p.
383]. A Bidirectional RNN (BiRNN) generates the output
yi based on the concatenation of output vectors from a
forward RNN and a backward RNN. The output of the
forward RNN denoted y f

i is based on the input x1:i and
the output of the backward RNN denoted yb

i is based

on the input xi:n in reverse order. The collective output
yi of the forward and backward RNN is a combination
of the forward output y f

i and backward output yb
i . The

output yi is:

yi = C
(

y f
i , yb

i

)
(2.17)

C denotes the function that combines the forward and
the backward output, which most commonly is a vector
concatenation [Gol16, p. 52].

Long Short-Term Memory

RNNs work well for building models based on se-
quence input, but training of the model is impeded
by the vanishing and exploding gradients problem
[GBC16, p. 390] [Gol16, p. 55]. This problem is particu-
lar to RNNs because the same weights are used for all
elements of the input sequence. This means that if all
elements of the sequence are the same, the gradients
will vanish if the weight is less than one and explode
if the weight is greater than one [GBC16, p. 391]. The
longer the sequence, the worse the problem becomes.
One solution has been to add skip connections so that
the state si is not sent directly to the computation of
si+1, but skips n steps so that it goes to the computation
of si+n instead. This works better for some long-term
dependencies but not all [GBC16, p. 395].

Another solution to the vanishing and exploding
gradients problem is to use linear self-connections with
a weight near one. If we have a value µt = vt in step
t, then a new value µt+1 in step t + 1 can be calculated
with µt+1 = αµt + (1 − α)vt and if the α parameter
is near one, then µt+1 will be similar to µt thereby
retaining historical information. Conversely when α is
near zero, historical information is quickly discarded.
Units using this kind of self-connections are referred to
as leaky units [GBC16, p. 396].

The most effective solutions to the vanishing and ex-
ploding gradients problem in RNNs are Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) collec-
tively known as Gated RNNs. Gated RNNs use the con-
cept of leaky units to retain information over more steps
while also being able to forget the information. In an
LSTM this is done by having multiple gates as seen in
the visualization in fig. 2.6.

In an LSTM, the units are connected recurrently to
each other just like in the RNN, but instead of only
applying an activation function between the time steps,
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an LSTM has cells that each have a self-loop. The gates
control the information flow of the cells.

The input gate controls whether the input goes to
the self-loop state which means that the information is
transferred to the next recurrence. The forget gate de-
termines whether the information should be removed
from the self-loop state meaning that the information
cannot be used in later time steps. The output gate
decides whether the cell should output the state infor-
mation which means that the state is actually included
in the computation of the time-step output instead of
only being passed forward in the memory cell [GBC16,
p. 399].

The number of hidden units in an LSTM refers to the
number of hidden states that are passed on as memory
between the time-steps. This is the same as using a vec-
tor of values as state instead of a scalar. By increasing
the number of hidden units in an LSTM, the capacity of
the model is increased.

Several variants of LSTMs exist. One of the variants
is LSTMs with peephole connections. An LSTM with peep-
hole connections use the cell state as input to the LSTM
gates. This is used in most modern implementations of
LSTMs [SSB14, p. 2] and can be added as a parameter in
the TensorFlow implementation [Ten19x]. LSTMs with
peephole connections have been found to be especially
useful to find spikes with a certain time difference in
the input sequence [GSS03]. These sort of spikes occur
when the sound input contains a certain rhythm.

As with basic RNNs, LSTM can also be bidirectional,
which is referred to as a Bi-LSTM.

4.2 Activation Functions
An activation function is a nonlinear function taking
a scalar as input and producing a scalar as output.
Because it is a nonlinear function, it is also referred
to as a non-linearity [GBC16]. A wide variety of acti-
vation functions exist and in this subsection, the most
important ones for this project are defined.

Logistic Sigmoid

A commonly used activation function is the Logistic Sig-
moid function [GBC16, p. 65]:

gσ(x) =
1

1 + e(−x)
(2.18)

The equation states that given the input x, the output
is in the range (0,1). The function saturates with input

Figure 2.6: Visualization of an LSTM from Good-
fellow, Bengio, and Courville [GBC16, p. 398].
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values that are very negative or very positive which
means that the output is insensitive to changes in the
input x when x diverges far from 0 [GBC16, p. 66].

Hyperbolic Tangent

The hyperbolic tangent function is often abbreviated as
tanh and it is closely related to the logistic sigmoid func-
tion gσ. The hyperbolic tangent function is defined as
[GBC16, p. 189]:

gtanh(x) = tanh(x)
= 2gσ(2x)− 1

= 2
1

1 + e(−2x)
− 1

(2.19)

The output of gtanh(x) is in the range (-1,1), but suf-
fers from the same saturation problems as the Logistic
Sigmoid [GBC16, p. 189].

Rectified Linear Units

The Rectified Linear Units (ReLU) activation function
gReLU is [GBC16, p. 187]:

gReLU(x) = max{0, x} (2.20)

This means that for all negative inputs x, the output
is zero, and for all positive inputs x the output is x.

A variant of ReLU called Leaky Rectified Linear Units
exists. This variant introduces a non-zero value αi that
is used when input x is less than zero [MHN13]:

gL(x) =

{
αx x < 0
x x ≥ 0

(2.21)

The α value enables negative values of x to "leak" into
the output with a modified scale. The typical value of α
is 0.01 [GBC16, p. 188] [MHN13, p. 3].

Both the standard ReLU and leaky ReLU showed
good results when used in the output layer of a neural
network-based acoustic model [MHN13].

Another variant of ReLU is clipped ReLU, which sets a
maximum value of the output [Kri10] [Amo+15, p. 4]:

gC(x) = min{max{x, 0}, γ} (2.22)

Here, γ is the maximum possible value of the output
of gC(x), hence it is "clipped" at γ. This means that the
range of the output is between 0 and γ. In Deep Speech
2 [Amo+15], γ is set to 20 and in TensorFlow a standard
implementation with γ = 6 exists [Ten19y].

Softmax

The Softmax function can be used to represent the prob-
ability distribution over a finite number of classes. This
makes it a bit different from the other activation func-
tions described in this section, because the value of an el-
ement depends on the value of the other elements in the
sequence. Given a sequence of n inputs x0:n = x1, ..., xn,
the softmax of xi is given by [GBC16, p. 179]:

gso f tmax(xi) = softmax(x)i =
exi

∑n
j=0 exj

(2.23)

All outputs of the function will be in the range (0,1)
and sum to one which is why it can be seen as represent-
ing a probability distribution of n categories [GBC16, p.
178].

4.3 Back-Propagation

When input is given to a neural network model and
the model produces an output, it is called forward-
propagation. A loss-value of the output can be calculated
using a loss-function to determine how far the output of
the model is from the expected output. The loss value
is used to update the weights of the model so that the
next iteration of forward-propagation outputs values
closer to the expected values. To do so, the gradients of
the model need to be computed. The process of doing
this is referred to as back-propagation.

If L(x) is the loss of input values x = x0, ..., xn and
xi is a value in x, then the partial derivative of L with
respects to xi is given by:

∂

∂xi
L(x) (2.24)

The partial derivative measures how the loss L(x)
changes when only xi changes. The gradient of the loss
L(x) is a vector of all partial derivatives of L(x) which
is denoted ∇xL(x).

When optimizing, the gradient is used to change the
input x in the direction that reduces L(x) most. This
process is called gradient descent. A new input x′ is found
by the following:

x′ = x− ϵ∇xL(x) (2.25)

where ϵ is a positive scalar called the learning rate
[GBC16, p.82].
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4.4 Loss Functions

A cost function J for a model f with input x and pa-
rameters θ takes the per-element loss L to calculate the
summed loss of the expectation of the data-generating
distribution pdata:

J(θ) = E(x,y)∼pdata
L( f (x; θ), y) (2.26)

When training, only a sample of the true distribution
pdata(x, y) is taken, hence the training set distribution
could be denoted as p̂data(x, y) and the cost function J is
then defined as:

J(θ) = Ex,y∼ p̂data(x,y)[L( f (x; θ), y)]

=
1
m

m

∑
i=1

L
(

f
(

x(i); θ
)

, y(i)
) (2.27)

here, the loss value is taken over m elements in the
training set and the loss values are summed to represent
the cost J(θ).

The loss function L used in machine learning prob-
lems depends on the problem domain. In ASR, a
common method is Connectionist Temporal Classification
(CTC) [GBC16, p. 448] [Amo+15, p. 2] [Bat+17]. CTC
defines how to receive output from RNNs and other
neural network constructions and convert the output
to a sequence of probabilities over an alphabet A.
Furthermore, CTC defines how to take the sequence of
probabilities and align it to the target output sequence
[Gra+06].

The probability sequence over the alphabet A is found
by taking the softmax of the output from the acoustic
model X generating Y. The output layer of CTC has one
extra unit, which represents the blank label, hence the
width of the CTC output is |A| + 1 where |A| denotes
the length of the alphabet A. By taking the softmax of
this output, a value between 0 and 1 is generated for
each possible label and all values sum to one, hence it
represents a probability for each label.

When constructing an output, all successive identical
labels are combined into a single label. The blank label
between two identical labels ensures that it is possible
to distinguish the case where a repeating letter is drawn
out because of the speaker and the case where a word
actually has a repeating letter. For instance, if the output
is to-o where - denotes the blank label, the word could
be collapsed to too whereas if the output is too- then it
would be collapsed to to.

During training, a target label l is known. The proba-
bility of this label given the AM’s output X to the CTC,
denoted p(l|X), is then found by summing the probabil-
ities of different alignments of l in output Y. The loss L
of the input X with target l is then calculated as:

L(X; l) = ∑
(X,l)∈D

− log p(l|X) (2.28)

where (X, l) ∈ D denotes that the sum is over all pos-
sible alignments of l.

When a model has been trained with CTC and needs
to be served, the probability output Y needs to be
traversed in a way that produces a relevant output
without a target label l. One way of doing this is with
Beam Search. Beam search is a modified breadth first
search (BFS) algorithm that prune the search tree’s width
in accordance to a heuristic function and a search width
β.

The worst-case asymptotic running time of a BFS is
O(V + E) [SW11, p. 541] [Shi+18, p. 11] where V is the
number of vertices and E the number of edges in the
graph.

The search space in this problem grows exponentially.
If we define At as At = |A| + 1 where |A| is the size
of the alphabet and the one is the blank label. Then for
any time step, any of the labels in At can be chosen. If
the problem is changed into a graph then each node is
the accumulated sequence of the chosen labels and each
edge corresponds to selecting the next label. This means
that the number of vertices in the graph grows as fol-
lows:

A0
t + A1

t + A2
t + · · ·+ An

t =
An+1

t − 1
At − 1

(2.29)

The number of edges is equal to the number of ver-
tices except for one layer, making it An

t −1
At−1 . Reducing this

to Big O notation results in an asymptotic running time
of O(An

t ). To reduce this complexity, Beam Search takes
for each level of the search space only the top β values
based on a heuristic function to search further through.
This reduce the problem to O(βn) [Jun06].

A weakness of beam search is that it does not guar-
antee to find a solution [Jun06], but in this problem all
nodes in the final layer are solution nodes, hence it will
always find a solution. Unlike BFS, Beam Search is not
guaranteed to find the optimal solution, thus a trade-off
between efficiency and effectiveness exists.
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A variant of beam search is to set the beam width to
one to select the best solution in each layer practically
changing the algorithm from a dynamic algorithm to a
greedy algorithm.

4.5 Batching

Batching, which in this project is used interchangeably
with mini-batching, takes m elements from the training
set and calculates the average loss of those elements.
Using this technique gives a more steady training than
training on single elements at a time since each ∆θ is
based on multiple training elements.

Because the elements in a batch is a random sample
of elements from the entire training dataset it is a good
estimate of the full training set’s loss. If the estimated
loss of batch B is denoted JB(θ) then the standard error
of the mean of JB(θ) is given by:

σJB(θ) =
σ√
m

(2.30)

where σ is the standard variation of all the elements
of the dataset B [GBC16, pp. 125-126 + 275]. As the size
of the batch m grows, the standard error of the mean
σJB(θ) decreases. The larger the batch size m, the less the
standard error of the mean will decrease when adding
one more element. This means that the effect of adding
more elements to the batch decreases as the batch size
grows.

Batching also impacts performance in training and
serving of the model because each element in the batch
can be processed simultaneously and/or grouped
together to do more efficient calculations using matrix
multiplication. This is especially true when using
GPUs.

Starting from a simple feed-forward layer as in
eq. (2.6), it is possible to batch elements in x as in the
following two formulas, where the first eq. (2.31) is for
an un-batched operation and the second eq. (2.32) is a
batched operation with m elements:

h = g (Wx + b)

= g


W1,1 . . . W1, f b1

...
. . .

...
...

Wv,1 . . . Wv, f bv




x1
...

x f
1


 (2.31)

h = g


W1,1 . . . W1, f b1

...
. . .

...
...

Wv,1 . . . Wv, f bv




x1,1 . . . xm,1
...

. . .
...

x1, f . . . xm, f
1 . . . 1




(2.32)

In the equations m is the batch size, f is the number
of features in a given input x and v is the output size.

When choosing a batch size it is important to note
that larger batch sizes make the model less generalized
to unknown data [Kes+16] [GBC16, p. 276]. A con-
sequence of smaller batches is that the learning rate
usually have to be lower. The training time and number
of iterations of the data would also increase when using
smaller batches. Smaller batches are also harder to
execute in parallel which slows down the computation
further. A small batch size according to Keskar et al.
[Kes+16] would be 32-512. The deficit of generalisation
can be alleviated by initial training of the model using
small batches that is then increased to larger batches
later [Kes+16].

Batch Normalizing

Batch Normalizing was first introduced in Ioffe and
Szegedy [IS15], where it is described as a normalizing
technique on individual batches of data. Batch nor-
malization allows for higher learning rates and can be
used in between layers of a model to improve their
independent learning of parameters.

There are many normalizing techniques. One tech-
nique takes each dimension of the data and scales to the
range between 0 and 1. Another normalization strategy
is to calculate the average of a dimension and then
subtract each value with the average calculated. This
technique is also called first moment normalization. It
can be shown as:

µ =
1
m

m

∑
i=1

xi

x̂i = xi − µ

(2.33)

in which µ is the average of a dimension, xi is the
dimension’s value at frame i and x̂i is the normal-
ized value of frame i. A similar technique effecting
each value by the variance is called second moment
normalization. This can be defined as:
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σ2 =
1
m

m

∑
i=1

(xi − µ)2

x̂i =
xi − µ√

σ2

(2.34)

To calculate the second moment, the first moment µ is
used. This is required to calculate σ2 which is the vari-
ance of the dimension. The second moment normaliza-
tion is then calculated by subtracting the first moment
and dividing with

√
σ2.

The batch normalisation from Ioffe and Szegedy
[IS15] combines both the first moment and the second
moment. The batch normalization has four steps as
shown in algorithm 1 where x is the input values, y
is the output values, m is the number of elements in
the batch B, δ is a small constant added to avoid the
potential division with zero, and BNγ,β is the Batch
Normalizing Transform which is scaled by γ and shifted
with β and trained like an FFNN layer.

Algorithm 1 Batch normalization as described in Ioffe
and Szegedy [IS15]

Calculate batch mean:

µB ←
1
m

m

∑
i=1

xi

Calculate batch variance:

σ2
B ←

1
m

m

∑
i=1

(xi − µB)
2

Normalize input:

x̂i ←
xi − µB√

σ2
B + δ

Scale and shift the normalized values:

yi ← γx̂i + β ≡ BNγ,β (xi)

Hoffer, Hubara, and Soudry [HHS17] show a more
advanced technique that solves the generalization prob-
lems of larger batches. The main point is that the lack
of generalization comes from its less frequent updates.
They suggest a technique where higher learning rates
for systems with larger batches produce similar good
results to smaller batches with smaller learning rates.

The technique is called Ghost Batch Normalization.
Instead of taking the entire batch normalization, the
normalization is calculated from a subset of the batch
simulating that the batches are smaller than they ac-
tually are [HHS17]. This technique is not used in this
project since the batch sizes of the final model were
small enough to avoid the problem.

4.6 Optimization Algorithms
An optimization algorithm in Deep Learning defines
how to change the parameters of a model θ to reduce
a loss function J(θ). The most important optimiza-
tion algorithms for this project are presented in the
following subsections. Many of the optimization
algorithms are presented because they are fundamental
for the AdaDelta optimizer, which is used in the final
experiments described later in this report.

Stochastic Gradient Descent

One of the most used optimization algorithms is the
Stochastic Gradient Descent (SGD). SGD takes a mini-
batch of m elements from the training dataset and
takes the average of the estimated gradients of the m
elements. The estimated gradients are then used to
update the parameters θ with the use of a learning
rate ϵ. SGD iterates until a stopping criterion is met
and for each iteration a new random sample of m
elements is chosen for the minibatch. It is necessary to
gradually decrease the learning rate ϵ over time, hence
the adapted learning rate in iteration k is denoted ϵk
[GBC16, p. 286]. The outline of the basic SGD algorithm
is seen in algorithm 2.

Algorithm 2 SGD as described in Goodfellow, Bengio,
and Courville [GBC16, p. 286]
Require:

Learning rate ϵk
Initial parameter θ
while stopping criterion not met do

Sample minibatch {x(1), ..., x(m)}
with corresponding targets {y(1), ..., y(m)}
Compute gradient estimate:
ĝ← 1

m∇θ ∑i L
(

f
(

x(i); θ
)

, y(i)
)

Apply update θ ← θ − ϵk ĝ
end while

The basic SGD is improved by adding momentum to
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the update of parameters θ. The purpose of doing so is
to reduce the variation of direction of updates stemming
from the limitation of calculating the average gradients
of the minibatch instead of the entire training set. A mo-
mentum is an accumulation of past gradients in a "veloc-
ity" vector v. The velocity vector vk is calculated based
on the velocity vector in the previous iteration vk−1 and
the current gradient estimates g. The new parameters
θ are found by adding the velocity vector v. The algo-
rithm is seen in algorithm 3.

Algorithm 3 SGD with momentum as described in
Goodfellow, Bengio, and Courville [GBC16, p. 289]
Require:

Learning rate ϵk
Momentum parameter α
Initial parameter θ
Initial velocity v
while stopping criterion not met do

Sample minibatch {x(1), ..., x(m)}
with corresponding targets {y(1), ..., y(m)}
Compute gradient:
g← 1

m∇θ ∑i L
(

f
(

x(i); θ
)

, y(i)
)

Compute velocity update: v← αv− ϵkg
Apply update θ ← θ + v

end while

AdaGrad

In some cases, the loss value is very sensitive to certain
parameters of the model. In those cases it is relevant
to use separate learning rates for the parameters. This
means that if the partial derivative of the loss of a pa-
rameter is high then the decrease of the learning rate
should be fast because only small changes of the param-
eters are needed to produce large results in terms of the
loss value. AdaGrad adapts the learning rate during each
iteration based on the historical values of the gradient.

The pseudo code is seen in Algorithm 4 where partic-
ularly the calculation of the parameter change ∆θ and
the accumulated squared gradient r are important. The
small constant δ is there to ensure that the denominator
is not zero in the initial iteration. The computation of√

r is computing the L2-norm of all previous gradients
on a per-dimension basis using the Hadamard product
which is denoted by ⊙. This is equivalent to accumu-
lating the magnitude of the gradients over time. The
parameter update ∆θ on the subsequent line is also on

a per-dimension basis using the Hadamard product
[Zei12, p. 2] [GBC16, p. 299].

Algorithm 4 AdaGrad as described in Goodfellow, Ben-
gio, and Courville [GBC16, p. 299]
Require:

Learning rate ϵ
Initial parameter θ
Small constant δ
Initialize gradient accumulation variable r = 0
while stopping criterion not met do

Sample minibatch {x(1), ..., x(m)}
with corresponding targets {y(1), ..., y(m)}
Compute gradient:
g← 1

m∇θ ∑i L
(

f
(

x(i); θ
)

, y(i)
)

Accumulate squared gradient: r ← r + g
⊙

g
Compute update: ∆θ ← − ϵ

δ+
√

r ⊙ g
Apply update θ ← θ + ∆θ

end while

Root Mean Square Propagation

AdaGrad works well for convex problems, but it has
problems when applied to a nonconvex problem. This
is because AdaGrad shrinks the learning rate based
on the entire history which means that the learning
rate could become too small before reaching a global
optimum and the training could therefore be stuck
in a local optimum. To prevent this from happening,
Root Mean Square Propagation (RMSProp) changes the
accumulated squared gradient formula to:

r ← ρr + (1− ρ)g ⊙ g (2.35)

and the parameter update ∆θ is changed to [GBC16,
p. 300]:

∆θ← − ϵ√
δ + r

⊙ g (2.36)

RMSProp introduces the hyperparameter ρ called de-
cay rate which controls the degree of history included in
the accumulation of r.

AdaDelta

Zeiler identifies in Zeiler [Zei12] the continual decay of
the learning rate in AdaGrad as a problem. His solu-
tion to this problem is the algorithm called AdaDelta in
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which it is possible for the learning rate to increase and
decrease [Zei12, p. 3].

AdaDelta is based on two ideas. The first is the idea of
accumulating r over a window which is created with an
exponentially decaying average of the Hadamard prod-
uct of the gradients g⊙ g with decay rate ρ. This is simi-
lar to RMSProp. The second idea is based on an approx-
imation of the Hessian matrix. The Hessian matrix pro-
vides additional curvature information which is useful
when optimizing a model, but the Hessian is computa-
tionally expensive to compute which is why the Hessian
diagonal is approximated instead [Zei12, pp 2-3].

The pseudo code for AdaDelta is seen in algorithm 5.

Algorithm 5 AdaDelta as described in Zeiler [Zei12, p.
3]
Require:

Initial parameter θ
Small constant δ
Initialize accumulation variables r(1) = 0 and r(2) = 0
while stopping criterion not met do

Sample minibatch {x(1), ..., x(m)}
with corresponding targets {y(1), ..., y(m)}
Compute gradient:
gt ← 1

m∇θ ∑i L
(

f
(

x(i); θ
)

, y(i)
)

Accumulate gradient: r(1) ← ρr(1)t−1 + (1 −
ρ)gt

⊙
gt

Compute update: ∆θt = −
√

r(2)2+δ√
r(1)+δ

Accumulate updates: r(2) = ρr(2)t−1 + (1− ρ)∆θ2
t

Apply updates: θ ← θ + ∆θ
end while

Adam

Adam is an abbreviation of adaptive moments and is
an extension of RMSProp with momentum. Adam
uses momentum and is able to adapt the momentum
during the training iterations. This makes the algo-
rithm more robust to the choice of hyperparameters
although the learning rate still has to be included as a
hyperparameter [GBC16, p. 302].

4.7 Regularization

When training a machine learning model, a training set
is used and a training error is calculated. This could be

called an optimization problem, but what separates ma-
chine learning from pure optimization is that the ma-
chine learning model needs to be able to generalize to
previously unseen data. This means that a generaliza-
tion error is also found. The generalization error, which is
also referred to as test error, estimates the expected error
on unseen input.

A machine learning model is trying to:

1. Achieve a small training error.

2. Reduce the gap between training and test error.

If a model is not able to get a small training error, it is
underfitting the data. If a model is not able to get a small
gap between training and test error, it is called overfitting
[GBC16, pp. 107-108]. The balance between underfitting
and overfitting is controlled with the model’s capacity.
If the capacity of a model is increased, it will tend to
overfit. If the capacity of the model is decreased, it will
tend to underfit [GBC16, p. 109].

This subsection will describe regularization, which is
intended to reduce the gap between training and test
error. In Goodfellow, Bengio, and Courville [GBC16, p.
117], regularization is defined as:

"Regularization is any modification we make to a
learning algorithm that is intended to reduce its
generalization error but not its training error."

Several regularization strategies exist. In the follow-
ing subsections, the most important ones for this project
are defined.

Dataset Augmentation

When the amount of training data is limited, it is
difficult to generalize the model to new data. A solution
to this is to generate "fake" data by augmenting the
existing training data thereby getting more data with
which the model is trained. When augmenting the
data, it is important not to distort the data in way that
changes the class which the data belongs to [GBC16, p.
233]. In the case of speech recognition, the data could be
distorted by changing the recorded speech of a person
saying "up" to a recording that sounds more like "top".
This would degrade the quality of the model because
the model would be trained to recognize "up" as "top".

In speech recognition, Jaitly and Hinton [JH13] devel-
oped a method called Vocal Tract Length Perturbation
(VTLP) where spectrograms are transformed along the
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frequency dimension thereby maintaining the character-
istics of the words while changing the pitch of the voice
saying the word [JH13].

A few data augmentations that is included in a Tensor
Flow tutorial for speech commands [Ten19f] could be
used on the sound extracted such as:

Padding length of the sound either before or after the
sound to make the sound to listen for start and end
at different points.

Offsetting starting points so that frames start at differ-
ent times.

Volume manipulation changing the recorded volume
by multiplying the amplitude with a value, and
then clamping the result to the -1 to 1 range.

Background noise mixing the sound with other
sounds, such as white noise. Here the mix can be
done in many creative ways also using all the other
points.

Early Stopping

The dataset used when training a model is often split
into a training set, a validation set and a test set. The train-
ing set is used to improve the parameters of the model
through loss calculation and back-propagation. The val-
idation set can be used during training to validate how
the model would respond to new input on which it has
not been trained by calculating the validation error.

It has been observed that during training when the
training error is decreasing, the validation error at some
point begins to rise. This happens when the model be-
gins overfitting the training set [GBC16, p. 239]. This
means that it is an advantage to store the parameters
every time the validation error improves and then re-
store those parameters when the model is done training.
This method can be further improved by including an
early stopping condition. With an early stopping condi-
tion, the model will stop training when the validation
error has not been lowered within a specified number
of training iterations. The model will then return to the
parameters that resulted in the lowest validation error
[GBC16, p. 240].

Dropout

Dropout provides some probability of removing non-
output units from the neural network [GBC16; Sri+14,

Figure 2.7: Without dropout (left) and with
dropout (right) from [Sri+14].

pp. 251-260]. The idea of dropout is based on ensemble
methods, where several models are trained separately.
This is computationally expensive which is why
dropout reuses most of the model by only removing
few units thereby approximating ensemble methods.
The units are practically removed by multiplying their
output value by zero.

Figure 2.7 shows the effects of applying dropout.
The figure to the left has no dropout applied and the
figure to the right has dropout [Sri+14]. Each iteration
randomly choose units based on a Bernoulli distribution.
A Bernoulli distribution is a discrete probability distri-
bution of one and zero, with a probability p of getting 1
and probability q = 1− p of getting 0.

Taking the FFNN hidden layer formula from eq. (2.5)
where h is the output and x is the input, applying
dropout modifies the input x by dropping elements
according to a Bernoulli distribution where p is the
dropout probability, rj is the jth Bernoulli random vari-
able, r is a vector of j independent Bernoulli random
variables, and ∗ is an element-wise product. Therefore
the modified hidden layer with dropout becomes:

rj ∼ Bernoulli (p)

x̃ = r ∗ x
h = g (Wx̃ + b)

(2.37)

5 TensorFlow

TensorFlow is an open-source platform for machine
learning originally developed by Google [Mar+15]. A
Tensor is an array of a variable number of axes [GBC16,
p. 31] and it is one of the central data structures used in
TensorFlow to represent data input and output.
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Figure 2.8: TensorFlow Architecture [Ten19i].

The computation done in TensorFlow can be thought
of as a computational graph, where the nodes are the
operations and the tensors are the edges between the
nodes [Ten19e]. All TensorFlow programs consists of
two phases:

1. Building the computational graph

2. Running the computational graph

An overview of TensorFlow’s architecture is given
in fig. 2.8. TensorFlow’s networking layer, device layer
and kernel are implemented in C and C++. It has a
Python client interface and a C++ client interface which
both communicate with the TensorFlow engine through
a C API [Ten19i]. This means that it is possible to work
with TensorFlow through the Python API while getting
the performance of the C/C++ engine. Implementa-
tions in this project only used the Python client, hence
optimizations within the kernel and device layer have
not been performed.

When building machine learning models in Ten-
sorFlow, a computational graph is constructed with
initial model parameters and the training iterations are
performed by sending data through the computational
graph. The parameters of the model can either be saved
and loaded later in the same computational graph for
further training iterations or be used for serving the
model. A served model using TensorFlow Serve has a
HTTP and a gRPC API.

gRPC is an abbreviation of gRPC Remote Procedure calls
[gRP19]. It is a payload agnostic open-source Remote
Procedure Call (RPC) framework that connects services
across machines. This can also be called Inter-process
communication (IPC).

gRPC has many features:

• low latency
• high scalability
• easy distribution
• language independent
• layered design enabling extensions
• load balancing

A basic example of gRPC usage is a client sending a
request to a server that sends a response back. A gRPC
system, like other RPC systems, provides a service
definition Application Programming Interface (API)
that can be called remotely. This service is based on
protocol buffers which is a language and platform
neutral marshalling mechanism for structured data
[Goo19c].

gRPC provides higher-level features and consistency
across multiple platforms and programming languages
that HTTP libraries typically does not. Examples of
these features are load balancing, failover and cascading
call-cancellation [gRP19].

The high performance of gRPC comes from its pars-
ing of data for communication, also called marshalling
and unmarshalling of the data for RPC calls.

gRPC has different modes of operation [gRP19,
Guides concepts] including: unary operation with a
single request and response from the client and server
stub, server-side streaming and client side stream-
ing promising message ordering in both cases and
bi-directional streaming with in-order messages. All
modes are able to be operated synchronously, blocking
and waiting for a response, and asynchronously, doing
other tasks while waiting for a response.

TensorFlow has a feature called TensorBoard [Ten19g],
which is used to visualize the computational graph.
Different metrics can be added to the visualization, for
instance the loss value of each iteration of training. In
this way, TensorBoard gives a real-time overview of the
training progress of the models. Another visualization
in TensorBoard is the diagram of the computational
graph, which can be used to compare different models.



3 | Related Work

Speech recognition, along with many other deep
learning problems, is very popular at the moment, with
several large research groups studying and improving
state-of-the-art performance. Since this area of research
is very popular in recent times, because of improve-
ments in hardware and machine learning techniques,
we only mention a few of the influential papers in
speech recognition and GPU learning in this chapter.

1 Baidu Deep Speech

Baidu Research - Silicon Valley AI Lab is a large research
group that among other fields also do research in the do-
main of ASR [Han+14; Amo+15; Bat+17; Gro19]. They
construct end-to-end neural networks that remove the
need of advanced feature extraction techniques such as
MFCC.

All of their systems use some variation of RNN net-
works and CTC loss. Their first publication was in 2014
and is referred to as Deep Speech 1 [Han+14]. Deep
Speech 1 uses 80 log filter bank spectrogram features
that are inferred in a model using a convolution layer,
two FFNN layers, a single BiLSTM layer and a final
FFNN layer. In the same research paper, a model using
four RNN layers to handle larger amounts of data
is also presented. Their models map to probability
distributions of characters that use a 4-gram language
model to improve the Beam Search results.

Baidu Research’s second iteration of the system was
published in 2015 and is referred to as Deep Speech 2
[Amo+15]. Deep Speech 2 modified and experimented
with several convolution layers and up to 7 layers of
LSTM and BiLSTM. The paper also presents results
with and without a language model and concludes
that a language model improves their performance.
Furthermore, they show the effect of different strides
and conclude that a stride of 2 does not decrease the
WER significantly. The model is not designed for
a specific language, hence it can be trained on both

English and Mandarin datasets with good results. Deep
Speech 2 thoroughly addresses performance issues of
their implementation. They provide a wide variety of
solutions, for instance a GPU-implementation of CTC
loss and efficient gradient sharing between the GPUs.

Another optimization introduced in Deep Speech 2
is a batching scheduler called Batch Dispatch, which
batches requests to the served model to improve
throughput. The result of all these improvements is a
more efficient ASR model with lower WER compared
to Deep Speech 1.

In Baidu’s paper “Exploring Neural Transducers for
End-to-End Speech Recognition” [Bat+17] they looked
at how different transducers work on the ASR systems
comparing their previous model from Deep Speech 1 &
2. They call the method from Deep Speech 1 & 2 a CTC
based model and compare it to an RNN-Transducer
and an attention model. They conclude that both
RNN-Transducers and attention models outperformed
their CTC model if the models are allowed to look at
the entire input meaning both forward and backward
model parts. The report also says that their CTC
forward-only models have better results than their
forward-only RNN-transducer and attention models
[Bat+17, p. 6]. In the conclusion they say that there are
further work to be done in evaluating both the CTC
and the attention based models. We chose not to use
RNN-Transducers and attention models because of
their need for the entire input for one classification and
instead we work with a CTC based model.

Some of Baidu’s latest research in ASR from January
2019 is a new system called Streaming Multi-Layer Trun-
cated Attention (SMLTA) [Gro19]. This system does not
yet have a published article but the system is described
as a truncated attention model. The SMLTA model uses
some form of local attention to reduce the computation
time and enable efficient streaming of results.

The serving of models have also been explored by
Baidu, where they research the batching of requests

20
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to be computed on GPU [Amo+15]. The models can
still be served using CPU and in SMLTA [Gro19] they
find that this serving is efficient without the need of
hardware acceleration through GPU.

Another feature is the "Dialect-Free Speech" that in-
tegrates Mandarin and six other Chinese dialects in a
single recognition system [Gro19].

2 Mozilla Common Voice

Mozilla Common Voice is an open-source project by
Mozilla that provides an open-source dataset along
with the project called Mozilla Common Voice Deep Speech
that is an open-source implementation of Deep Speech
1 [Moz18]. Mozilla Common Voice aims to collect a
large amount of speech data in as many languages as
possible. Usually the datasets required to train speech
recognition models are owned by large companies
or organisations, but this initiative makes a publicly
available dataset. This dataset is the same used in this
thesis and is described in further detail in chapter 4.

The open-source implementation of Deep Speech 1
[Han+14] is currently still in development on GitHub
[Moz19]. It is focusing on availability and compatibility
with multiple devices and provides users the ability to
use a speech recognition system out-of-the-box for not
only PC but mobile devices as well. The downside to
this system is that the model uses the first implemen-
tation from Deep Speech 1 [Han+14], not the newer
models.

3 Listen Attend Spell

Google makes ASR systems as well, one of which
was proposed in Chan et al. [Cha+15] called Listen,
Attend and Spell (LAS). LAS is an attention based RNN
decoder outputting character sequences. At the time of
writing the model did not outperform their previous
generation CLDNN-HMM model that had a WER of
8.0% compared to the LAS model with 14.1% without
language model and 10.3% with a language model.

The concept of the model is, as its name implies, to
listen, attend and spell. The listener is a pyramidal
BiLSTM that constructs hidden states that are used
to construct an attention that using another LSTM
produces grapheme characters which are probability
distributions of character combinations [Cha+15, p. 3].

The pyramidal approach reduces the dimensionality
of the input while also preserving long range dependen-
cies in the sound that would be harder using convolu-
tions with a fixed size kernel. The pyramid aspect takes
two consecutive time steps from the previous layer and
concatenates them into one. This halves the number of
time steps of the input for the next layer of the pyramid.

The International Conference on Acoustics, Speech
and Signal Processing (ICASSP) had a conference May
2019 [ICA]. At this conference the newest techniques
are presented in the field of ASR and among the submis-
sions were also a newer version of LAS [GSW19]. Guo,
Sainath, and Weiss [GSW19] take the attention based
model from Google further by applying a spelling
correction model to correct the errors from the LAS
output.

4 GPU Deep Belief Networks

Most modern neural networks are based on GPU train-
ing. The original purpose of these GPUs is graphics
processing for video games, but luckily the computa-
tions required for video game graphics are efficient
in the computational workload fundamental for the
training of neural networks [GBC16, p. 432].

The computations for converting a game world into a
2-D visualisation on screen benefit from parallelization
because each individual pixel rendered for the screen
is an independent workload that can be computed in
parallel. This has lead to design choices for GPUs to
have large memory buffers to contain textures and
models (vector meshes), high degree of parallelism to
parallelize each pixel computation and high memory
bandwidth to return the image results faster while
having lower clock speed and branching capability
than CPUs [GBC16, p. 433].

Some of the first Neural networks using GPUs from
Steinkraus, Buck, and Simard [SBS05] was a connection
of two fully connected layers of a deep belief network
doing unsupervised learning for labeling data. This
work was just before the release of CUDA enabling
general purpose computing [SBS05; Var17; Coa+13]
[GBC16, p. 433]. The results from Raina, Madhavan,
and Ng [RMN09] a few years later using CUDA show
a 70 times speedup from using GPU based computing
compared to CPU based models.

Using not only one but multiple GPUs have since
then been exploited [KSE12; Kri14; Coa+13]. Using
multiple GPUs gives many design options of where
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and what parts of the network should be located and
where the computations should be done. The two most
influential design choices are model parallelism and data
parallelism.

Model parallelism is achieved by splitting up a model
between different GPUs. One example is having the first
LSTM layer on GPU one and the second layer on GPU
two. This would allow each of these two layers to be
double size if the GPUs are the same model, but while
one GPU is working the other one is waiting. Another
approach is to split the layer into multiple parts that is
then distributed, for instance if the single LSTM layer is
split across two GPUs. In Krizhevsky, Sutskever, and
E. Hinton [KSE12] multiple network layers was split up
between two GPUs, by having some of the calculations
of a layer done on one GPU and the rest done on another
GPU. While model parallelism allows for larger models
it is often inefficient to transfer the values between the
GPUs.

Coates et al. [Coa+13] takes model parallelism
on GPUs to the extreme with multiple servers and
measures performance of models with billions of
parameters. Their experiments show that if the number
of model parameters grows, it is possible to get perfor-
mance gains scaling linearly with the number of GPUs,
but all GPUs are not utilized 100%. Their experiments
are conducted with up to 64 GPUs.

Another technique to employ is data parallelism de-
scribed in Krizhevsky [Kri14] and Dean et al. [Dea+12].
Data parallelism splits work across GPUs based on in-
dividual training elements in batches. Each inference
operation on an element in a batch is independent work
and it scales well when distributed across GPUs.

5 Hardware Architecture

Using GPUs have given rise to many different hardware
architectures. This introduces many challenges and re-
quires specialized personnel and customized software.

Many large companies such as Amazon [Ama19],
Google [Goo19a], Microsoft with Azure [Mic19] and
IBM with Watson [IBM19] provide cloud platforms
that give access to expensive hardware with the added
benefit of no installation. Such systems are priced by
the hour and in some cases by the minute with costs for
instance in Google Cloud starting from 4-5$ per hour
for 4 Nvidia Tesla P 100 [Goo19b].

State-of-the-art systems for machine learning em-
ploys hierarchical structures on the hardware level to

Figure 3.1: Hierarchical framework levels
[Dün+18].

take full advantage of the hardware potential. This is
shown in papers such as IBM’s Dünner et al. [Dün+18].
They propose a system called Snap ML that divides
the system into three hierarchical levels to optimize the
computation and data transfer that often is a bottleneck
of both single GPU and multi GPU machine learning.

The hierarchical levels can be seen in fig. 3.1 and are
divided into:

• Level 1: Workers in a cluster utilizing and scaling
to large numbers of individual machines referred
to as scaling-out. Scaling-out means adding more
machines to the cluster of computers.

• Level 2: An individual machine in the cluster utiliz-
ing one or multiple GPUs referred to as scaling-up.
Scaling-up is the action of upgrading a machine, in
this instance it could be to add another graphics
card.

• Level 3: A single GPU’s environment having many
CUDA and Tensor cores for massive parallelization
of work.

Communication between the different levels use
different protocols and physical connections, in this
project Peripheral Component Interconnect Express
(PCIe) [Fis19] is used. PCIe is a current expansion slot
standard that is a physical connection from the mother-
board to an expansion card, in this case a GPU. Nvidia
provide another connection as well called NV-Link
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Figure 3.2: NV-Link enabled from DGX-2 [NVI17].

that provide the highest communication bandwidth
between GPU and CPU at the moment [NVI17].

In fig. 3.2, NV-Link enables faster and direct commu-
nication between GPUs. Each interconnection between
GPU pairs have up to 300 GB/s each with NV-Link2.

On the other hand, the PCIe based system in fig. 3.3
uses PCIe to communicate with the graphics cards,
which are separated into two sets with interconnection
NV-links. In this case, the PCIe limits the amount of
data transferred from CPU to GPU at PCIe speeds.

Many different server providers claim that their
servers offer the best support for deep learning. Nvidia
themselves have servers called DGX with a slightly
older system in DGX-1 using the architecture from
fig. 3.3 and their newer solution with direct NV-Link as
seen in fig. 3.2.

One even newer instance is IBM’s AC922 [IBM18]
with an open source motherboard and CPU with PCIe-4.
The AC922 system can use either system architecture.

While all of these systems use state-of-the-art inter-
connections and boast high performance, this thesis
uses a solution with a lower cost, as can be seen in
table 3.1. The cost calculations of SIM and RebelRig can
be seen in appendix 8. Details about the systems are in
chapter 4.

Figure 3.3: PCIe hybrid cube mesh from DGX-1
[NVI17].

Name Cost Cards
DGX-1 149.000 $ 8 Tesla V100
DGX-2 399.000 $ 16 Tesla V100
AC922 [Mor18] 166.213 $ 4 Tesla V100

SIM 9.598 $ 4 GTX 1080Ti
RebelRig 3.412 $ 4 RTX 2070

Table 3.1: GPU rig costs.



4 | Experimental Setup

1 Software Setup

Our system is split into several different modules to
enable efficient training and deployment of the model
after training. The basic architecture is inspired by Yu
and Deng [YD15] where the model is split into Feature
Extraction and Acoustic Model. The system is fitted to
the TensorFlow environment, hence serving comprises
a separate module in the following description. An
overview of the software setup is seen in fig. 4.1 where
the arrows show dataflow, the solid square boxes are
modules which does not necessarily correspond to a
single Python file, the dotted boxes represent Docker
containers and the circles within the boxes are outlines
of the content of the boxes.

The following subsections describe the basic modules
of the system. First, the feature extraction is described
followed by the acoustic model and finally the serving
of the model. The performance benchmark is described
in chapter 6.

1.1 Feature Extraction

Feature extraction (FE) has the responsibility of taking
an audio file and extracting important features from the
audio. The features could for instance be MFCC, magni-
tude spectrograms or Log Mel. The decision on which
feature extraction to use is a trade-off between high qual-
ity results and efficiency of computation. If the FE re-
sults in a high number of features per audio file, the AM
has more data to work with, hence it could be expected
to be slower, but it also has more of the original informa-
tion stored in the data file, hence it could be expected to
produce results of higher quality. The trade-off between
efficiency and quality is explored in the experiments de-
scribed in chapter 6.

The FE takes training and validation audio files as in-
put and saves the extracted features in files as seen in
the upper left part of fig. 4.1. Since all recordings in the

dataset are mono-channel with a sample rate of 16 kHz,
it is loaded as such with Essentia MonoLoader [Ess19].
For each audio file, a corresponding feature file is gener-
ated.

The FE could have been an integrated part of the AM
meaning that the features of an audio clip would have
to be extracted for each training iteration where the au-
dio clip is selected. The features extracted from an au-
dio clip is deterministic, hence the consequences of such
a decision would be that the same features would be
extracted several times. This is unnecessary overhead,
which has been removed in this project by storing the ex-
tracted features in files that are loaded by the AM later
for training.

The FE is done on the CPU using TensorFlow’s
contribution functions for handling sound and signals
[Ten19l]. The files are split into chunks of 100 files each
that is then put into a queue for a thread-pool to do FE
for each file. The FE has also been executed on the GPU,
but this did not provide any performance advantages
partly because the computation was not batched. For
this reason, all experiments were conducted with FE on
the CPU. As seen in fig. 4.1, the FE module is located
inside the TensorFlow GPU Docker container because
it is implemented to use either CPU or GPU inside the
GPU Docker container.

When the sound has been loaded, it is windowed
into frames of length 1024 with a step of 512 samples
between each frame. The result is a frame length of
64ms with an overlap of 32ms. As mentioned, different
FE techniques are used and it is calculated based on the
theory described in chapter 2. Given a 10 second audio
file, 312 frames of sound is generated, each frame with
a dimensionality determined by the chosen FE. The
dimensionality of each frame is:

512 for Magnitude spectrogram
64 for Mel & Log Mel
13 for MFCC

24
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Figure 4.1: Overview of Software Setup.

Each value is represented as 32-bit Float, hence the
total number of Float values for the 10 second audio file
is 159744, 19968 or 3744 depending on the FE technique.
This demonstrates the significant efficiency difference
an FE provides.

1.2 Acoustic Model
The acoustic model (AM) has the responsibility of con-
structing and training the models. It loads the features
from the files and iterates through them while updating
the parameters of the model. Whenever the loss value
of the validation set improves, the model parameters are
saved in a file which can later be retrieved by the Server
module to construct the final model as seen in fig. 4.1.

Optimization

Figure 4.2 provides a more detailed representation of
the actions in the AM module. The optimization process
of the AM in fig. 4.2 begins with the black dot and ends
with the black dot with a red circle. The first action
in the process is building the inference model. This
action comprises setting up the layers and initializing
the parameters of the model. When optimization is
done on GPUs, the construction of the model is done
on each GPU included in the system. This is described
in further detail in section 3. The program has been

Figure 4.2: Optimization in AM based on training
and validation dataset.
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set up to choose between several different inference
models. Each inference model is given a number and
the program takes a number as a parameter to pick
a specific inference model. This makes it possible to
switch between models in the different experiments.
The models are referred to as M<number> in this report,
hence model number 33 is called M33. An overview
of the different models is found in appendix B. Several
models seem very similar, but small differences in
the TensorFlow-implementation or parameter settings
mean that they are presented as different models.
Indexing the models also enables the Server module
to load the parameters with an original model. If the
old models are removed from the code, the model
could not be loaded again by the Server module even if
the model parameters are still stored. In this way, the
indexing of the models enables backward compatibility.
The weights in the model are initialized using Xavier
Initialization as described in chapter 2 section 4.1.
This is performed with tf.contrib.layers.xavier_initializer
[Ten19q]. The Xavier Initializer was chosen based on
small experiments conducted in initial stages of the
project. Different initializers available in TensorFlow
were tried and the Xavier Initializer demonstrated
faster loss convergence, hence it was chosen for the rest
of the project.

When the inference model is constructed, the features
are loaded from the files. The features of the training
dataset and the validation set are both loaded. The
amount of RAM available in both servers used in
this project are great enough to load both datasets in
the beginning and keep them in memory throughout
the optimization. Both feature sets are divided into
equally-sized shards. One shard is created for each
GPU available when training on GPUs. This means that
each GPU has a unique part of the dataset on which it
optimizes the parameters of the model.

When the inference model is constructed and the
features are loaded in shards, the optimization of
the model can begin as described in chapter 2 sec-
tion 4.6. Initially, four different optimization algorithms
were tried out. All optimization algorithms require a
specified learning rate, hence the program has been
implemented to accept the learning rate as a parameter.
This makes it easier to try different learning rates and
determine which learning rate works best.

After initial tests using an SGD optimizer, we
switched to an AdaGrad optimizer from TensorFlow
tf.train.AdagradOptimizer [Ten19n]. The AdaGrad opti-

mizer is able to adapt the learning rate as specified in
chapter 2 section 4.6, but when the loss-value decreased
to a certain level it could not decrease further. This
corresponds to the description in chapter 2 section 4.6
where it is described that the learning rate becomes too
small to get to the global optimum. Instead, the training
iteration is stuck in a local optimum which is seen in
our case by having a medium-high loss-value that is
not improved through the iterations.

To mitigate this problem, the Adam optimizer in
tf.train.AdamOptimizer [Ten19o] and the AdaDelta
optimizer in tf.train.AdadeltaOptimizer [Ten19m] were
tried out. The final decision was to use the AdaDelta
optimizer, which showed good results in our ini-
tial experiments and is also used in Bahdanau et al.
[Bah+16]. The program takes a number specifying the
optimization algorithm as an argument. This means
that it is easy to switch between the different optimizers,
although all experiments described later in this report
is based on AdaDelta.

When the optimization algorithm is decided upon,
the next action from fig. 4.2 to describe is the batching
of training features. The size of the batch is also an
argument given to the program. The performance
effects of different batch sizes are determined by the
experiments described in chapter 5.

The next step is calculating the loss of the batch.
A CTC loss calculation as described in chapter 2 sec-
tion 4.4 is performed for each element in a batch with
tf.nn.ctc_loss [Ten19k]. The mean of the losses is com-
puted and based on this the gradients are calculated.
When doing this on GPUs, the gradients from all GPUs
have to be collected and averaged as well. This is
described in further detail in section 3.3.

In fig. 4.2, the step after back-propagation is taking a
batch of validation features. The loss value of the valida-
tion batch is calculated on the same version of the model
except any dropout is removed from the model. The
purpose of calculating the loss value of the validation
set is to test the generalization capabilities of the model
during training iteration. The validation set loss value
is used as a stopping condition for the training and it
ensures that the model parameters that are expected to
work best on the test dataset are always stored. This
is represented by the next actions in fig. 4.2. If loss is
improved during the iteration then the model parame-
ters are stored. If the loss is not improved and has not
been improved during the last t iterations, where t is
an integer specified as a parameter to the program, then
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the training of the model is terminated. This design de-
cision adheres to the theory described in chapter 2 sec-
tion 4.7.

If the training has not been terminated, the training
continues iterating by taking a batch of training features
again.

Inference Model

Using TensorBoard as mentioned in chapter 2 section 5,
the models defined in appendix B can be inspected
further. As an instance of a model, the computational
graph of a single GPU Tower of M33 is presented in
appendix D. It demonstrates the different layers that
a model is composed of and the flow of data through
the layers. The figure shows two independent com-
putational graphs. The left graph is the computation
on the training dataset and the right graph is the
computation on the validation dataset. The figure is
read from the bottom, where an Iterator node is seen.
The input features flows to the mfcc_norm node and
the target sentences and target length flows directly
to the CTCLoss node. The mfcc_norm node is a batch
normalization on the feature input as described in
chapter 2 section 4.5 performed in TensorFlow with
tf.layers.batch_normalization [Ten19s].

After the initial batch normalization, the data
flows to the convolution layer conv1d which is a
one-dimensional convolution using tf.nn.conv1d. This
convolution takes different types of padding and
different strides as arguments. In the case of M33
the padding is set to valid meaning that there is no
padding, but most of the models use same padding
meaning that the input dimensionality equals the out-
put dimensionality. Different stride settings has been
experimented with in chapter 6. Another argument for
conv1d is whether to use NVIDIA’s CUDA Deep Neural
Network library (cuDNN) which is an optimized library
for neural networks on GPUs. This has been activated
in our project. The convolution layer is followed by a
ReLU node and a normalization layer. This could also
have been represented in the same node as conv1d,
but in this specific case the nodes have been expanded.
The instance of M33 in appendix D does not include
a dropout layer, but this kind of layer could also be
represented as an individual node in the graph after
mfcc_norm.

The next five layers consist of LSTMs, which also
includes activation functions, batch normalizations
and dropouts between the layers although it for the

sake of brevity has not been displayed in the graph.
M33 has five LSTM layers, but the number of layers
is different for some of the other inference models
and the effect of changing the number of LSTM
layers is reported in chapter 6. The LSTM is imple-
mented with tf.contrib.rnn.LSTMBlockCell [Ten19r]
and tf.nn.dynamic_rnn [Ten19w]. The bi-directional
LSTM makes use of tf.nn.bidirectional_dynamic_rnn
[Ten19u] instead of tf.nn.dynamic_rnn because it is able
to take both a forward RNN cell and a backward RNN
cell. The LSTMBlockCell can be initialized with or
without peephole connections as described in chapter 2
section 4.1. The effect of adding peephole connections
was explored during the project and it is described in
chapter 6.

A cuDNN version of the LSTM cell also exists. This
LSTM was approximately 30% faster during the train-
ing iterations on our models, but the model parameters
saved in the end could only be used on GPUs and gener-
ally requires a different handling during the final serv-
ing preparation and serving of the model. Because of
this, only the standard LSTMBlockCell was used during
the final experiments in this project.

The last part of M33 before loss calculation is the log-
its node which is the fully-connected output layer. It is
implemented with tf.layers.dense [Ten19t] and the output
size is defined to be the size of the alphabet + 1 as de-
fined in chapter 2 section 4.4. It is followed by a ReLU-
activation which is either a standard ReLU, as in M33,
or a clipped ReLu with γ = 6 as defined in chapter 2
section 4.2.

The program takes several arguments which define
the model, the training procedure and the information
stored and printed by the program. The arguments to
the program are defined in appendix E.

1.3 Serving

Serving the ASR model comprises two steps as seen in
fig. 4.1. First, the model parameters have to be loaded
into the computational graph to save the serialized
model. Then the serialized model has to be served
using a TensorFlow Serving Docker image [Ten19j].

The Server module is executed in a TensorFlow
CPU Docker container. This is in contrast to the FE
and AM modules, which were executed in a Ten-
sorFlow GPU Docker container which includes the
Nvidia CUDA Toolkit and other toolkits needed for
GPU execution [Ten19d]. The Server module loads
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the model parameters from file, constructs the FE
computational graph, constructs the AM inference
model, constructs a Beam Search computational graph,
combines the three computational graphs and applies
the model parameters loaded from file to the combined
computational graph. The construction of FE and
AM in the Server module reuses code from the other
modules, but the Beam Search is only used in the Server.
The Beam Search is implemented with TensorFlow’s
tf.nn.ctc_beam_search_decoder [Ten19v] with a preceding
SoftMax of the logits output from the AM inference.
The Beam Search is set to only select the top path
and it takes the beam width as an argument. The
width argument is specified when executing the Server
module, hence experiments can easily be conducted
with different widths. The final computational graph
as a combination of FE, AM and Beam Search is saved
as a Protocol Buffer file (.PB), which is a mechanism for
serializing structured data [Goo19c].

The arguments to the Server module is:

Run Test: This is a Boolean argument that if set to true
will construct the computational graph and imme-
diately give input to and print output of the com-
bined model without saving the model as a PB-file.
In this way, a model can quickly be used without
saving and loading the combined model first.

Model: Specifies the path to the saved model parame-
ters. This path is also used to load the right infer-
ence model, find the network size, the convolution
stride and other model information relevant when
building the final computational graph.

Beam Width: The beam width of the Beam Search.

As mentioned in the beginning of this section, the
model is finally served using the TensorFlow Serving
Docker image. The path to the PB-file storing the model
is mounted when initializing the Docker container and
the model is served with a gRPC and HTTP interface
on the ports specified. The served model accepts HTTP
and gRPC requests as long as the Docker container
is running. If a new PB-file is stored in the mounted
path, TensorFlow Serving is able to load the new model
without server downtime and serve both the new and
the old model concurrently [Ten19b]. This means that
clients can still use the old model or begin using the
new model. The CPU Serving Docker image is chosen
in this project, but a GPU Serving image also exists
[Ten19j]. Serving on GPUs would be an advantage if

batching is applied during serving. Batching during
serving has the potential to improve throughput, but
it could also increase latency of individual requests as
reported in Deep Speech 2 [Amo+15]. The increased
latency occurs because the incoming requests have to
be collected and batched. The higher throughput occurs
because resources are utilized better, especially if the
Docker GPU Serving is used. Serving the model on
GPUs is discussed further in chapter 7.

2 Workload Setup

The data used in this project is the Mozilla Common
Voice dataset for English [Moz18], which is a dataset
constructed in the project Mozilla Common Voice
briefly mentioned in chapter 3.

Mozilla Common Voice is an open source project
containing speech from people all over the world.
The data is collected from people reading predefined
sentences that are validated by other users. The dataset
contains 541 hours of validated English sentences and
the dataset is still growing. The version used in this
report is from February 8, 2019. The dataset provides
a split along two dimensions. The first dimension in-
dicates whether a speech recording has been validated
by other users and the second dimension indicates the
purpose of the dataset.

The first dimension splits the dataset into invalid, other
and valid. Valid contains clips that have at least two lis-
teners verify that the sound and the text correspond. In-
valid has at least two listeners who says the sound and
the text does not correspond. Other contains the sound
with no votes or an equal number of valid and invalid
votes. Only the data validated by other users has been
used in this project.

The second dimension of the dataset provides a split
of the data into test, train and validation sets. The valida-
tion set is referred to as the dev set in Mozilla Common
Voice so that it is not confused with the valid part of the
dataset, which refers to the part of the dataset which has
been validated by other users. The fixed split into three
parts enables easy comparison with other implementa-
tions using the same datasets if one remembers to use:
train set for training the model, validation/dev set to pa-
rameter tune and verify the generalisation of the model,
and test set for testing the error rate on a finished model.

Distributions of the dataset along with size and num-
ber of unique words is shown in table 4.1.
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In chapter 2 section 2, the speech properties are de-
scribed with utterance, speaker model and vocabulary.

The utterance of Mozilla Common Voice is continuous
speech, since it consists of recordings of people reading
pieces of text in a natural way. The utterances do not
reach the level of spontaneous speech because the users
are reading a text and it is not at the level of connected
words because the users do not pause between any of
the words in a given sentence.

The speaker model of Mozilla Common Voice is speaker
independent, because the dataset contains speech from
a great number of different speakers from different parts
of the world. This poses a challenge to the ASR model,
because it needs to generalize to different voices and ac-
cents.

Mozilla Common Voice contains 10721 unique words
in total. The number of unique words in the validated
training dataset is 8004. A Large-Vocabulary Contin-
uous Speech Recognition (LVCSR) dataset generally
have roughly 20,000 to 60,000 unique words according
to Jurafsky and Martin [JM09], hence the vocabulary
of Mozilla Common Voice could be said to be medium
sized. If the output of the ASR model is character-
based, it would be able to output out-of-vocabulary
words. By contrast, if the output of the ASR model is
word-based it is only able to output the 8004 unique
words in the training set. Only seven words in the test
dataset and ten words in the validation/dev dataset are
not represented in the training dataset. These words
are out-of-vocabulary. The character-based model is
able to output the out-of-vocabulary words, but the
word-based model is not able to do so.

Another important observation about the data is that
there are duplicate sentences in the training, dev and
test dataset. For instance, the sentence "you got your
sea legs yet" is represented nine times in the training,
one time in the dev and two times in the test validated
dataset, but all the utterances are different. This makes
it easier for the model to identify the sentences in
the test dataset because it is able to train on similar
sentences in the training dataset.

As mentioned in the beginning of this section, the
Mozilla Common Voice dataset contains 541 hours of
speech. This is appropriate for a master thesis, but it
is a small dataset compared to the data used in Deep
Speech 2 [Amo+15, p. 15]. They use 11940 hours of
English speech to train their model, while also using
data augmentation to further bolster their dataset.
Google’s Listen Attend Spell (LAS) system was trained

on 2000 hours of raw data, that was augmented to 40000
hours using various techniques of data augmentation
[Cha+15, p. 6].

Folder Name Samples Size Unique Words
cv-invalid 25.403 1.2G 6.147
cv-other-dev 3.022 103M 4.066
cv-other-test 2.961 99M 4.042
cv-other-train 145.135 4.8G 10.616
cv-valid-dev 4.076 147M 3.523
cv-valid-test 3.995 145M 3.505
cv-valid-train 195.776 6.9G 8.004
Total 380.368 14G 10.721

Table 4.1: Datasets in Mozilla Common Voice [Moz18].

2.1 Data Cleaning & Preprocessing

All data in Mozilla Common Voice is lowercase with
no alphanumerics and punctuation except space and
apostrophe. This is a common practice where some
have small variations including comma and period, for
instance like in LAS Chan et al. [Cha+15, p. 6].

The dataset contains varying lengths of audio files.
This is a problem when batching data together because
each element in a batch must have the same length in
TensorFlow. This forces each element in a batch to be
padded to at least the largest element in that batch.

The model is trained on all elements in the dataset
that are under a specified length and padding all other
elements up to the same length to achieve consistency
in the length of inputs to our model. Before padding
elements, the actual length of the elements are stored
enabling the calculation of loss on parts containing
sound while ignoring the padded values. It is accept-
able to do cutoff and padding in our case since each
file contains a single sentence of approximately same
length. This is unlike other speech systems such as
Deep Speech [Amo+15] that contain both single word,
sentences and conversations making the length of the
files more diverse. Our model is still able to handle
dynamic size input after the training and files longer
than our training’s cutoff length.

After reducing the data based on a cutoff length it is
further reduced by setting the stride and convolution
width of the models as specified in eq. (2.12). This
reduces the amount of output features of the model, but
since the CTC loss requires the output to have at least
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stride Training size
4 19.350
3 61.576
2 164.453

Table 4.2: Effects of stride on character-based models.

the amount of input features that is used for all output
characters or words, we filter the files further according
to the criteria in eq. (4.1). W is the number of input
frames before padding, Tsize is the number of words or
characters in the target sentence, F is the receptive field
size and S is the stride:

Tsize ≤
W − F

S
+ 1 (4.1)

The equation is almost the same as eq. (2.12), but with-
out the padding variable since only valid convolutions
are applied in our newest models. Tsize must be less than
or equal to the number of output features which corre-
sponds to the right hand side of the equation. If Tsize
was higher, it would not be possible to output the en-
tire correct sequence because the length of the output
sequence would always be less than the length of the
target sequence Tsize.

Table 4.2 shows the reduction of the training data
if the cutoff length is 300, convolution width is 8 and
the stride is set to the different values. The number
of elements is reduced from a total of 195.776 in the
training dataset. In the table it is seen that the number
of training elements decreases significantly when the
stride is increased. By increasing the number of frames
generated from an audio clip during feature extraction
as defined in chapter 2 section 3.1, a lower number
of elements would need to be discarded. Increasing
the number of frames corresponds to increasing W in
eq. (4.1), hence the right-hand side of the inequality is
increased.

3 Hardware Setup

During this project two setups have been used to train
and serve the models. We set up both systems from
hardware to fully functional systems. The systems are
not as powerful as other GPU clusters used for speech
recognition such as the one used by Baidu in Deep
Speech 2 [Amo+15] using a setup with 8 or up to 16
Nvidia Tesla V100s.

3.1 System 1 - RebelRig

The first system, from here on called RebelRig, is a low
cost GPU system designed to minimize the cost of cre-
ating a multi-GPU system. It is set up with 4 Nvidia
RTX 2070 at 1.7GHz, an Intel i7 6700k processor having
4 cores hyper-threading to 8 logical cores at 4 GHz, and
a low cost mining rig motherboard ASRock H110 Pro
BTC+ [AsR19]. The downside to this system is that the
motherboard’s communication with the graphics cards
is over PCIe 2.0 x1 except for the first card that is PCIe
3.0 x16. Another downside is its limited 16GB DDR4
Dual Channel RAM at 2133 MHz. The OS and storage
is on a Micron M600 512GB SATA SSD.

3.2 System 2 - Sim

The second system, from here on called Sim, is a
dual socket Super-Micro server with a X9DRG-QF
motherboard [Sup18] using two Intel XEON E5-2630V2
each running 6 cores with hyper-threading resulting in
24 logical cores at 2.6 GHz using 126GB DDR3 Quad
channel RAM at 1600 MHz. On top of this, the system
is using 4 Nvidia GTX 1080 Ti each at 1.5GHz. The OS
and storage is just like the RebelRig system on a Micron
M600 512GB SATA SSD. The setup’s architecture can be
seen in appendix C.

3.3 GPU DNN Training

The training of our models are in the case of both
systems on multiple GPUs. Training on GPUs enables
a high level of parallelism and enables many times the
performance of CPU-based training. This gives some
challenges in the distribution and collection of data,
and because we use TensorFlow we have to manage
most of this ourselves allocating different parts of
the computation to a specific graphic card and CPU
[Ten19p]. Most frameworks for deep learning support
the distribution of computations to multiple GPUs,
for instance: Pytorch [PyT], Keras [Ros17], and Caffe
[Jia+14].

While TensorFlow gives the ability to specify where
a computation should go, it does not per default specify
where the variables are located. To enable quick updates
we want to locate the updating and management of vari-
ables on the CPU while having the main bulk of compu-
tations made on the GPUs. To do this we use tower ab-
stractions, identifying each graphic card as an isolated
environment as in fig. 4.3 [Ten19h].
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Figure 4.3: Visualization of multi-GPU setup from
TensorFlow [Ten19h].

The variables located on the CPU in fig. 4.3 are the
model’s parameters. They contain all the weights for the
different model layers. For each execution loop these
are transferred to each of the towers for calculation of
loss and gradients. The loss and gradients are then cal-
culated and returned to the CPU which calculates the
mean gradient for all GPUs. The gradients are used to
update the weights in the variables and the loop repeats
for the next iteration.

While fig. 4.3 shows how to allocate the model, it is
missing the data. To help with this, we use the data
input pipeline from TensorFlow [Ten19c]. This data
input pipeline is shown in fig. 4.4 and enables the
CPU to prepare the next batch of data (the blue colour)
while the GPU is calculating the result of the previous
batch (the green colour). This significantly reduces the
time the system spends idle (the red colour). This is a
non-blocking preparation allowing the CPU to prepare
more than one batch of data for the GPU filling up a
defined size buffer.

The batches of input data are shuffled for a more even
training of the network. The input pipeline also allows
for data augmentation increasing the amount of poten-
tial data but this functionality is not used in this project.

In systems with more than one GPU, more data input
pipelines are prepared isolated in their own threads. In

this report the dataset is divided into fractions, one for
each GPU, and used for different input pipelines. This
gives a performance that scales near linear with the
number of GPUs as shown in chapter 5.

3.4 Mixed Position Training

Another optimization that can be made at the cost of
a slightly lower precision is mixed position training
[NVI19b; Mic+17]. Mixed position training is training
the model using lower floating point precisions while
maintaining a master set encoded in higher precision.

Algorithm 6 From NVIDIA [NVI19b]
W32 ←Weights
S← LargeValue
for each training iteration do

W16 ←W32.toFloat16
I ← InputQue.Deque()
loss← FP(W16, I)
scaledLoss← loss× S
gradients← BwPropergate(scaledLoss, W16)
if gradients.contains(In f ||NaN) then

S← reduce(S)
else

gradients← gradients× 1/S
W32 ←WeightUpdate(gradients, W16)
if no Inf or NaN in last N iterations then

S← increase(S)
end if

end if
end for

While using mixed position training does produce
higher speeds, it also has some deficits. The main one
is loss of precision and vulnerability to vanishing and
exploding gradients. A solution to these problems
is shown in algorithm 6. In the algorithm the loss
is scaled higher to preserve smaller gradient values
thereby removing the vanishing gradient problem.
Training iterations that contain Infinite or Nan values
are ignored and instead the loss scaling is reduced,
which solves the problem of exploding gradients.

Some of the first to employ this technique during
training are the Baidu research team. Deep Speech 2
[Amo+15] describes very briefly its use in the served
model but the actual details are further described in
Micikevicius et al. [Mic+17] that show increases in
performance using the lower 16-bit precision.
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Figure 4.4: Pipeline without preprocessing (top) and pipeline with
preprocessing (bottom) from TensorFlow [Ten19c].

The performance improves with regards to computa-
tional speed, transfer speed and memory usage. The
computation speed is increased because the GPUs can
execute twice the amount of 16-bit operations than 32-
bit in a single tick [NVI19b]. This is much like Single
Instruction Multiple Data (SIMD) commands on the CPU.
The data transfer is lowered since each value is reduced
to half the size. This improves performance especially
in systems where data transfer is a bottleneck which is
the case in this project. The memory usage of the GPU is
also lowered enabling larger models on the GPUs. This
has a large impact on the ability to use smaller machines
for training and serving.

Overall mixed position training could produce up to
a 3x speedup on "the most arithmetically intense model
architectures" [NVI19b] or according to Micikevicius et
al. [Mic+17] 2-6x speedup.

An independent benchmark by Perbos-Crinck [Per19]
shows less improvement in performance using 16-bit
precision. It shows that graphic cards such as the 1080Ti
used in Sim does not benefit from using 16-bit floats
and actually performs worse using 16-bit floats. On
the other hand, the performance of RTX 2060 increases
when changing from 32-bit to 16-bit because 16-bit
precision makes it possible to double the batch size
with the same memory usage. The observation from
this article is that the newer generation of graphics
cards benefit more from 16-bit.

The reason behind this difference between the gener-
ations is the micro architectures difference going from
Pascal [NVI16] on the GTX to Turing [NVI18] on the

RTX. RTX’s Tensor-cores are able to utilize the mixed
precision [NVI19a] while the GTX does not have such
functionality on its hardware.

Another suggestion from NVIDIA [NVI19b] is that
reduction layers such as mean, variance, SoftMax
and batch normalization should not be reduced in
precision while training. This is further enforced by
the implementations in TensorFlow that in many of the
predefined functions require at least 32-bit encoding,
such as the implementation of batch normalization in
tf.layers.batch_normalization [Ten19s]. The suggestion
from NVIDIA [NVI19b] requires the models to switch
between the 16 and 32 bit encoding constantly between
each layer since our models contain a batch normaliza-
tion between each layer. This introduces overhead in
the casting of the values back and forth and ultimately
reduces the performance. Mixed position training
has been tried during this project with M25, but the
performance was not improved. For this reason, the
other implementations of this project are not making
use of mixed position training.



5 | GPU Training Performance

When training on more than one GPU, it is important
to be aware of the neural network topology, since differ-
ent topologies have large impact on computation time.
Furthermore, the trade-off between model accuracy and
efficiency has to be handled and potential performance
bottlenecks identified.

To examine the above-mentioned issues, we have run
multiple benchmarks using our models to determine
which parameters give an efficient training. Efficient
in this context is a high throughput of samples in the
training phase while also producing quality results in
the served model.

One way to measure and reason about the system is
the USE method that can be summarized as: "For every
resource, check utilization, saturation and errors" [Gre13,
pp. 181- 184] [Gre17]. Resources refer to the specific
physical components such as CPU, disk, busses, and
GPUs. The resources we look at in this report is limited
to CPU, busses, and GPU. The busses specifically refer
to the PCIe busses used for the communication with the
GPUs.

Utilization specifies how much time the resources
spend servicing work. Saturation defines the amount
of extra work for the resource that cannot be serviced
immediately and is therefore queued. Errors refer to
events that produce errors in the running system, hence
it is work which the resource could not complete.

The metric for utilization in this project is volatile
GPU utilization, which is "percent of time over the past
during which one or more kernels was executing on the
GPU" [NVI12, p. 90].

In the context of training a neural network, saturation
becomes harder to reason about since often infinite
amounts of data is queued for processing. The satura-
tion of the training could focus instead on the memory
transport and data pipelining trying to avoid memory
bottlenecks thereby making the computations compute-
bound. We consider the system saturated if the GPUs
are compute-bound while being compute-bound it

would also be considered fully utilized.
Memory-bound is opposite to compute-bound, and

is a distinction between when the GPUs are internally
using their memory bandwidth efficiently [NVI19b].
This terminology can be used for CPUs as well and is
comparable to CPUs’ state of cache where a CPU is
compute-bound when the cache is hot and memory-
bound when the cache is cold [Gre13, p 32]. In the
context of this project, the term memory-bound is used
to describe when the system is memory-bound on the
outside connection to the GPUs, in this case the PCIe
bus connection from CPU to the GPU.

In addition to the metrics in the USE method, through-
put is an important metric. Throughput is volume pro-
cessed over time [Gre13, p. 27], hence in the context of
training a machine learning model it can be defined as
the number of trained samples per second.

Other metrics for throughput could have been used
such as floating point operations per second (FLOPS)
[NVI19b]. But generalizing this to all the models
and operations would add little to no value to the
experiments. Another option is Frames processed per
second used in Strom [Str15] when training the Alexa
speech recognition system. This is an appropriate
measurement, and can be calculated from our values by
multiplying by 300 since each elements have 300 frames
while we train.

A reason why we use samples per second is that
it gives a better indication of the performance to
be expected from a final served model from a user
perspective if using GPUs.

Some guidelines from Nvidia that should further
improve performance is followed where appropriate
[NVI19b], such as: layers should be wide rather than
many deep layers; batches, layers and convolutions
should be multiples of 8; and sequence problems
should be padded to a multiple of 8. This is to follow
the optimal tiling of the operations for the GPUs to be
run on Tensor cores and secondly on CUDA cores.

33
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Another connection that could be measured is the con-
nection from CPU to disk and CPU to RAM. In the sys-
tem implemented, all training data is loaded into RAM
once using a thread pool to parse it for a training ses-
sion, but since the data loading from disk to RAM is a
one time operation it is not further examined.

Further research of the performance implications of
dual/multi socket CPU’s are possible because of their
separated memory lanes and separated connections to
the graphics cards. This type of experimentation is pos-
sible on the SIM setup as seen in appendix C. Since we
did not include code to pin processes to specific cores,
it introduces a high chance of the CPU to communicate
with graphics cards not in direct connection requiring
the CPU to send the data from its memory through the
other CPU and on to the graphics cards introducing
high overhead. Instead of this we focus on the scaling
performance of using multiple GPUs.

1 Single GPU

To measure the performance of the system, we start with
measurements on a single GPU to get information about
what works well without the added overhead of multi-
ple GPUs.

Two different experiments are conducted on RebelRig.
One experiment is conducted on the RTX 2070 GPU con-
nected with PCIe 2x1 and the other experiment is con-
ducted on the identical GPU connected with PCIe 3x16.
Four different models are trained through 250 iterations
with different model sizes. The number of elements per
second is noted for each iteration.

The results are seen in fig. 5.1. Figure 5.1a shows the
PCIe2x1 performance, fig. 5.1b shows the PCIe3x16 per-
formance and fig. 5.1c shows the difference between the
performance of the two. The coloured lines are the me-
dian values, and the marked areas around the lines are
the first and third quartile. The x axis is the network
size multiplier which influences the different LSTM lay-
ers so that they each are the size specified in the mul-
tiplier. Convolutions are not changed by the network
multiplier.

M13 consists of a single LSTM layer and a fully-
connected output layer. M14 only has a fully-connected
output layer. M17 consists of three LSTM layers with
batch normalization and a fully-connected output layer.
M19 consists of a batch normalization before a convo-
lution layer with stride 2, width 8 and kernel size 256
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Figure 5.1: Network size training throughput ex-
periment.
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followed by three LSTM layers and a fully-connected
output layer.

M14, the blue line, has the same performance for all
network size multipliers since it does not have an LSTM
layer. The performance drop at multiplier size 64 is due
to other processes running while that particular bench-
mark was run. M13 and M17 are affected slightly by
the network size growing, with larger networks giving
lower throughput. M19 starts with a performance that
is higher than the simple feed forward M14. This is be-
cause of the stride included in M19 which halves the
amount of values that is sent through the LSTM. All of
the above is the case for both the PCIe2x1 and PCIe3x16
connected GPUs.

As seen in fig. 5.1c, the difference in performance of
both systems stays almost the same giving indications of
clear gains in changing the PCIe from 2x1 to 3x16. M19
indicates that the difference drops at higher values in
this graph, but extended tests show that this does not
continue and stays above 500 elements per second dif-
ference. The conclusion is that bigger models such as
M17 have lower throughput and have less difference be-
tween the PCIe connections but the performance differ-
ence stays the same.

Another experiment that changes the parameter from
network size to batch size has been conducted. The results
are seen in fig. 5.2. The figures show that increasing
batch size improves throughput. This is because GPUs
are able to highly utilize their many CUDA and tensor
cores increasing the degree of concurrent work done.
The improvement is especially obvious in the LSTM
models, where LSTM layers are dependent on previous
time steps’ output resulting in poor parallelization
unless batched. The difference between the throughput
of M19 and M13 is demonstrating the effect of using
convolutions. M13 only has a single LSTM with no
convolution and has almost the same throughput as
M19 with three LSTM layers and a single convolution
layer. This point is further demonstrated by comparing
M17 and M19 where the throughput is significantly
worse for M17 no matter the size of the batch.

The throughput of all models increases as the batch
size increases although the throughput of the LSTM-
based models are improved relatively more compared
to models without LSTMs.

Based on the results here, it is concluded that small
network sizes with high batch sizes give the high-
est throughput and that high stride values improve
throughput. The limit of the batch size is given by the
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Figure 5.2: Batch size training throughput experi-
ment.
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Figure 5.3: Multi-GPU throughput.

memory available on the graphics cards, that in the case
of RTX 2070 is 8GB (7952MB).

2 Multiple GPUs

Using the model described in chapter 4 we scale using
data parallelism essentially copying the model to each
of the GPUs used having a data pipeline for each. This
experiment is conducted on 50 batch iterations using a
character based M19 with a network size multiplier of
800 with 10000 training elements.

Figure 5.3 and table 5.1 show the performance
increase using multiple GPUs with different batch
sizes on both RebelRig in fig. 5.3a and Sim in fig. 5.3b.
The batch sizes of 500 on RebelRig and 900 on Sim
maximises memory usage on the GPUs and crash the
program if set higher.

Results show that using more GPUs and/or larger
batch sizes increase throughput during training. The
increase in performance is especially clear on RebelRig

GPUs batch elm/s relative
Rebel 1 200 395.5 1.0

4 200 833.2 2.1
1 500 482.0 1.0
4 500 1448.2 3.0

Sim 1 200 318.2 1.0
4 200 1164.8 3.7
1 500 388.6 1.0
4 500 1530.1 3.9
1 900 390.7 1.0
4 900 1542.65 3.9

Table 5.1: Multi-GPU throughput values.

fig. 5.3a. It is also the case for Sim fig. 5.3b where there
is an increase in performance increasing batch size
above 200 but no increase above 300.

In RebelRig’s case, the performance is increased by
a relative factor of 3 with a batch size of 500 when
the number of GPUs are changed from 1 to 4. Sim
increases to 3.9 times performance when using 4 GPUs.
Figure 5.3b sometimes show higher performance than
the number of GPUs, where the plotted relative perfor-
mance is higher than the number of GPUs used. This
is because of uncertainties in the measurement since
the values are only based on 50 batch iterations. All the
average values calculated were close to but below the
relative number of GPUs.

In table 5.1 a single RTX 2070 performs better than the
GTX 1080Ti. Two possible reasons could be: First, the
RebelRig only uses a single CPU, and does not suffer
from dual socket transportation of memory. Second, the
clock speed of the CPU on RebelRig is much higher at 4
GHz compared to the 2.6 GHz on Sim.

The findings are similar to other papers where
Deep Speech 1 [Han+14, p. 5] describes that they find
smaller batches become memory-bandwidth limited.
Krizhevsky [Kri14] use up to 8 GPUs (K20) and show
speedups of 1.9 for two GPUs 3.7 for 4 and 6.3 for 8
GPUs are presented using PCIe 2.0 x16 to PCIe switches
each connected to 4 GPUs. Strom [Str15] distributed the
computation across compute nodes on Amazon Web
Service (AWS) using GPU instances with a single GPU.
The relative speedup in that paper using 5 nodes was
4.3 and with 80 nodes 54 times speedup

The throughput is only as fast as the slowest GPU
because the batched result is calculated based on the
result of all individual GPUs [Dea+12]. This means
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nothing for the Sim setup since all GPUs are exactly the
same, but it has a major impact on the performance of
RebelRig where the one GPU connected with PCIe3x16
is slowed down by the others.



6 | Served Model Experiments

The performance of the served model is evaluated
based on latency, throughput and quality of output.
The model is served on the Sim machine without
hardware acceleration and therefore only using CPU.
This was chosen because systems such as SMLTA
[Gro19] performs well when served on CPU, but scal-
ing the number of concurrent users would benefit from
batching and offloading the calculations to GPUs. The
experiments and measures used are described in the
following sections.

1 Latency

Latency is the time it takes for the client to be serviced
by the model [Gre13, p. 16]. This means that we need
to measure the time from a request is sent by the client
until a response is received by the client. We are inter-
ested in finding how the latency changes with increas-
ing number of concurrent requests. Therefore, the entire
dataset is sent sequentially as requests first with a single
requester, then with double the amount of concurrent re-
questers and so on doubling until a bottleneck is found.
The experiment is repeated to make sure that the results
are stable. The concurrent requesters are simulated us-
ing a python multiprocessing pool, with the number of
concurrent users as the number of threads allocated for
the pool.

For each request, the following is written to a CSV-file:
the latency in seconds, the target sentence, the result sen-
tence, the filepath, the loaded audio size in bytes and the
file size in bytes. By writing the file size and loaded au-
dio size to the result file, it is possible to see how the
latency is related to the size of the input to the model
and the duration of the audio clip. These results are also
used when measuring the quality of the results.
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Figure 6.1: Latency scaling audio length M33.

1.1 Latency Results

Figure 6.1 and fig. 6.2 are plots of the highest, lowest
and median latency of different audio file lengths with
sequential requests. The plots show a linear relation be-
tween the duration of processing and the length of the
sound files. For all models in this project, the latency is
lower than the length of the audio and the linear relation
is maintained. As the audio length increases, the rela-
tive latency per second of audio decreases. This is likely
due to overhead in sending and receiving requests. Ad-
ditionally, it is observed by comparing fig. 6.2 to fig. 6.1
that simpler models with fewer and smaller layers, such
as M20 with three LSTM layers, have lower latency and
complex models, such as M33 with five LSTM layers,
have higher latency.

Figure 6.3a shows the relation between the number
of concurrent users and the latency in seconds for
M33. The plot shows the upper and lower quartiles in
the shaded areas and the median latency on the line.
The latency is stable when the number of concurrent
requests is less than the number of logical cores of
24. When the number of concurrent requests increases
from 24 to 25 thereby exceeding the number of logical
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Figure 6.2: Latency scaling audio length M20.

cores, the latency quickly increases to almost 3 seconds
median latency. Subsequently, the median latency
steadily increases between 25 = 32 and 29 = 512
concurrent users. The number of concurrent users was
scaled above 29 but suffered severely when exceeding
1024 because the RAM was filled. A reason why the
RAM was filled could be the work queue was being
filled faster than requests were handled.

Because this experiment uses the Sim machine as
both requester and server without pinning the server
and requester Docker containers to specific cores, the
system has more context switches and higher memory
usage when the number of requests grows compared
to a setup where the requester and server are either
pinned to specific cores or are on separate machines.
This means that the actual performance without han-
dling the requests concurrently on the same machine
could be better than the one shown in fig. 6.3a.

2 Throughput

Throughput is the volume processed over time [Gre13,
p. 27], hence it gives us the amount of audio we can pro-
cess within a certain time limit. The experiment setup
is similar to the latency experiment, but with the addi-
tion of measuring the time it takes from the first audio
request until the last response is received. As in the la-
tency experiments, the number of concurrent requests,
the experiment iteration, and the elapsed time are writ-
ten to a CSV-file. The maximum of concurrent users was
again set to 512 because if increased the RAM would be
filled.

To calculate the throughput, the total time it takes to
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put.
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process all the files is first measured. This is a measure-
ment that includes the entire setup of concurrent users
in the thread pools and the timer is stopped when all
requests have been processed. Figure 6.3b shows the to-
tal time to process all the files in the test dataset with
increasing amount of concurrent users. Taking a closer
look at the results, it took 5400 seconds to process the
18100 seconds of sound with one user. Increasing the
number of concurrent users above 32 maintains the per-
formance but it does not improve it.

The throughput is then calculated by:

Throughput =
Total Time of Files

Total Processing Time
(6.1)

This relation is shown in fig. 6.3c. The graph shows
that it is possible for the system to process 40 seconds of
sound per second. This means that the system can han-
dle 40 real time producers of sound concurrently with-
out building up a backlog.

All the latency and throughput experiments fits well
with the fact that the system has 24 logical cores. Increas-
ing the number of concurrent requests above this point
does improve performance and the results show that the
system is able to handle more with no significant loss to
performance.

3 Quality

The two previous sections describe how fast the ASR
models return results and how well the system handles
requests. This section describes the quality of the mod-
els, which relates to how close the output of the ASR
system is to what was actually said in the audio given.

3.1 Metrics

The quality of the model is evaluated by comparing the
output sentences to the target sentences. Several metrics
evaluating the quality quickly and systematically exist.
We decided to use WER, CER and BLEU and they are
described in further detail in the following subsections.

The quality experiments are conducted based on the
output and target sentences from one of the latency ex-
periments. The output only needs to be retrieved once
since the model is deterministic, hence the output will
always be identical given the same input with the as-
sumption that no exceptions occur. For each target and

result sentence pair, the following is written to a CSV-
file for later analysis: filepath, WER, CER, BLEU, target
sentence and result sentence.

CER

A common metric in ASR is Character Error Rate (CER),
which is used in Deep Speech 2 [Amo+15], Cold Fusion
[Sri+17] and in “End-to-end attention-based large
vocabulary speech recognition” [Bah+16]. These papers
do not specify how they calculate CER, but define
it as similar to WER just with characters instead of
words. The WER is based on the number of insertions,
deletions and substitutions, which on a character-level
is called an edit distance or Levenshtein distance [Nav01].

The Levenshtein distance is calculated by counting
the number of insertions, deletions and substitutions
relative to the maximum number of edits denoted
by max(|x|, |y|), hence the number of edits e(x, y)
of a sentence x and a sentence y has the property
0 ≤ e(x, y) ≤ max(|x|, |y|) which means that the
Levenshtein distance is:

CER = d(x, y) =
e(x, y)

max(|x|, |y|) (6.2)

The Levenshtein distance d(x, y) consequently has a
value between 0 and 1, where 1 means that the sentences
are far from each other and 0 means they are identical.

We used the Python implementation of Levenshtein
distance from the text distance package by Orsinium
[Ors19].

WER

The most common quality evaluation metric in ASR is
Word Error Rate (WER) [YD15; Amo+15]. WER is based
on the number of insertions, deletions and substitutions
necessary to convert the result sentence R to the target
sentence T. WER can be described as [Kin18; VD12]:

WER =
I + D + S

W
(6.3)

In this function, I is the number of insertions, D is the
number of deletions, S is the number of substitutions
and W refers to the number of words in the target sen-
tence T. Since the division is the number of words in
the target sentence the score can become above 1 if the
output sentence is longer than the target. A more pre-
cise definition of WER is based on the word-level Lev-
enshtein distance, hence WER can be defined as [PN07]:
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WER =
1
|T|

K

∑
k=1

dL (Tk, Rk) (6.4)

Where dL denotes the word-level Levenshtein dis-
tance, |T| is the length of the target sentence T and K is
the number of sentences in T and R which in our case is
always 1, hence eq. (6.4) could be rewritten as:

WER =
dL (Tk, Rk)

|T| (6.5)

We used the implementation of WER from the Python
package Jiwer by Vaessen [Vae19].

BLEU

Within the field of Machine Translation (MT), Bi-Lingual
Evaluation Understudy (BLEU) is a widely used metric
[HDA11; Pap+02; CC14]. The purpose of BLEU is to
evaluate machine translations quickly, inexpensively
and independent of language [Pap+02]. It does so by
taking the geometric mean of n-gram precisions be-
tween the target sentence and the produced sentences
[HDA11; CC14]. Geometric mean is the n-th root of the
product of n numbers, opposed to arithmetic mean that
sums and divides with the length. BLEU correlates well
with human judgments on the document level, but on
the sentence level it has poor correlation. This problem
is alleviated by introducing smoothing functions and
brevity penalty [CC14].

Although BLEU is mainly used in MT, it is also widely
used within the ASR-related field of Speech Translation
(ST), where speech in one language is recognized and
translated to text in a different language [HDA11]. In ST
problems, WER sometimes leads to worse translations
even if it is only used to evaluate the ASR module of the
ST system [HDA11]. It is not common to apply BLEU to
systems that only generate sentences from speech, but
because of the promising results within ST and because
it is an n-gram based precision metric, we decided to
apply it in our project.

A BLEU score ranges from 0 to 1 where lower scores
signify low quality and higher scores signify high
quality [Pap+02]. However, with certain smoothing
techniques, for instance smoothing technique 5, the
score limit exceeds 1. The precision part of the BLEU
score P is calculated with a result translation sentence
T, which is equivalent to our actual output sentence; a
reference sentence R, which is the ideal output of our

system also called target; and the maximum number of
grams N, in our case 4:

P(N, T, R) =

(
N

∏
n=1

pn

) 1
N

(6.6)

where:

pn =
mn

ln
(6.7)

with mn as the number of matched n-grams between
translation sentence T and the reference sentence R and
with ln as the total number of n-grams in the translation
sentence T [CC14].

The poor correlation between human judgments and
BLEU on the sentence level occurs when an n-gram
precision of a sentence is 0, because according to eq. (6.6)
and eq. (6.7) the BLEU precision score P(N, T, R) of the
entire sentence evaluates to 0 when a single mn is 0.
This is alleviated by introducing smoothing techniques.
Chen and Cherry [CC14] compared seven different
smoothing techniques including three new techniques
specifically developed to correlate better with human
judgments. Technique number seven correlated well
with human judgment in the experiments conducted by
Chen and Cherry, hence this technique was chosen for
this project.

Technique seven is a combination of two other
smoothing techniques, which is technique 4 and tech-
nique 5 in “A Systematic Comparison of Smoothing
Techniques for Sentence-Level BLEU” [CC14].

In smoothing technique 4, mn is replaced by a geo-
metric sequence covering the cases where mn = 0. The
algorithm for the calculation is in algorithm 7.

Algorithm 7 Smoothing technique 4 from [CC14]
invcnt← 1
for n in 1 to N do

if mn = 0 then
invcnt←invcnt×(K/ ln(len(T)))
m′n ← 1/invcnt

end if
end for

In this algorithm, m′n replaces mn, K is a constant set
empirically, T is the translation sentence and len(T)
is the length of sentence T. The technique assigns a
smaller smoothed count to shorter sentences.
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Smoothing technique 5 takes the averages of mn−1, mn
and mn+1, hence the modified n-gram match count m′n
is:

m′n =
m′n−1 + mn + mn+1

3
(6.8)

starting with m′0 = m1 + 1. The idea of this smoothing
technique is that m′n for all similar values of n should be
similar. For instance, if the bigram count is high then the
trigram count should also be high even though no actual
trigrams exist. This is based on the idea that a bigram is
an incomplete trigram, hence the bigram count should
add to the trigram count.

Smoothing technique 7 combines the two other
techniques by first calculating m′n with technique 4 and
then taking the average of all modified and unmodified
n-gram match counts as in technique 5. In this way,
the smoothing technique has the best of both worlds
with smaller smoothed counts for shorter sentences and
similar smoothed counts for similar n-grams.

The brevity penalty BP(T, R) of the result translation
sentence T and reference/target sentence R is:

BP(T, R) = min
(

1.0, exp
(

1− len(R)
len(T)

))
(6.9)

where len(R) is the length of sentence R and len(T)
is the length of sentence T [CC14]. If the length of the
result translation sentence T is shorter than the target
sentence R then BP(T, R) < 1 and if T is longer than or
equal in length to R then BP(T, R) = 1.

The final BLEU score is then calculated by multiply-
ing the precision P with brevity penalty BP [CC14]:

BLEU(N, T, R) = P(N, T, R)× BP(T, R) (6.10)

The BLEU score will always be greater than 0 and re-
sult sentences shorter than the target sentence will get
lower BLEU score than result sentences longer than or
equal in length to the target sentence. The BLEU score is
calculated with the NLTK Translate package, where the
seven smoothing techniques and brevity penalty are im-
plemented [Pro18]. The maximum number of n-grams
is set to 4, which is the default in the NLTK Translate
package.

3.2 Results
This section defines the results of the quality exper-
iments of the models. The objective is to achieve a

performance that is close to the related systems. The
results achieved in related work are seen in table 6.1.
Two WERs are defined for each system where possible.
The first WER is from a clean dataset and the second
WER is from a noisy dataset where data augmentation
has been applied. The experiments in this project are
based on Mozilla Common Voice, which is smaller than
the datasets used in related work. The datasets used
in some of the related work contain over 2000 hours of
speech, but some papers also publish performance on
smaller amounts of data which is included as well. The
speech clips are of varying lengths ranging from single
utterances to continuous speech.

It is expected that the WERs of this project would be
higher if the models were applied to the larger datasets
used in the related work since the vocabularies in these
datasets are larger.

The sizes of the models in the related work also ex-
ceed what would fit the hardware setup for this project
with our batch sizes, hence the sizes of the model in this
project are smaller.

The following subsections look at the effect on
quality when the AM is changed based on the follow-
ing: character-based or word-based output; LSTM or
BiLSTM layers; Mel, LogMel or MFCC features.

Acoustic Model Output & Direction

The results of four different models are seen in table 6.2.
In this table, the C is an abbreviation of characters and
W is an abbreviation of words, meaning that the model
names and BLEU scores with C are mapping characters
and W are mapping words. The model settings for
the character-based models are a single convolution
with width 8, stride 2 and three LSTMs of size 1024.
The convolution of the word-based models are width
16, stride 8 and each of the three LSTMs has size 1024.
All models are trained using batch normalization and
dropout of 0.5 with a dataset cutoff length of 300 MFCC.

First comparing the performance of the word-based
models to the character-based models, it is seen that
the word-based models outperform the character-based
models in all metrics. The difference between the
models are smaller when looking purely at the CER.
The reason for this is that the character-based models
are having trouble spelling the words correctly all the
way through the words. A single wrong character in a
word will significantly increase the WER, but only affect
the CER slightly. This means that the character-based
models may be penalized too much by the WER metric
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Model Hours WER (Clean) WER (Noisy)
Deep Speech 1 [Han+14, pp. 7-8] 300 25.9 n/a
Deep Speech 1 [Han+14, pp. 7-8] 2300 16.0 19.1
Deep Speech 2 [Amo+15, p. 17] 120 29.23 50.97
Deep Speech 2 [Amo+15, p. 17] 12000 8.46 13.59
Listen, Attend, Spell [Cha+15, p. 7] 2000 10.3 12.0
Attention by Enforcing Monotonic Alignment [Raf+17, p. 7] 80 16.0 n/a
CLDNN-HMM [Cha+15, p. 7] 2000 8.0 8.9
PAPB for Seq2Seq ASR without LM [Bas+19, p. 5649] 80 10.8 n/a
PAPB for Seq2Seq ASR with LM [Bas+19, p. 5649] 80 3.8 n/a
A spelling correction model for End-to-end ASR (Upgraded LAS)
[GSW19]

960 4.28 n/a

Table 6.1: Best quality results of related work.

Model Type Size Batch-size WER CER BLEUC BLEUW
M 30 LSTMC 1024 256 99.9 53.7 26.4 9.3
M 29 BiLSTMC 1024 256 78.0 32.5 50.9 20.7
M 30 LSTMW 1024 800 36.9 29.6 72.6 49.8
M 29 BiLSTMW 1024 800 37.3 30.9 68.9 50.7

Table 6.2: Quality results of character-based and word-based models with LSTMs and BiLSTMs.

compared to how much a single wrong character will
affect a human’s understanding of the text. The BLEU
score is meant to be closer to humans’ perspective of
what constitutes a correct and comprehensible text.
Looking at the character-based BLEU-score it is seen
that the BiLSTMC is close to the word-based models,
hence it is close to the labeled text regarding the mean-
ing, although the word-based models still have better
scores.

The conclusion of comparing the word-based models
to the character-based models is that the character-
based models are not able to spell most words correctly
and that it is more difficult for the character-based
models to learn because of the increased complexity
of outputting long sequences of letters instead of
outputting shorter sequences of words.

The latter conclusion is further backed up by the
training duration, which was significantly higher for
the character-based models than the word-based mod-
els. Furthermore, the loss value during training was
higher for the character-based models meaning that it
underfits the training set. The underfitting could have
been impeded by producing more frames in the feature
extraction by reducing the frame step size. Another
option is to increase the amount of training data either

by more recordings or adding data augmentation.
Regarding the differences between using LSTMs

and BiLSTMs, the measurements tend to be better
when using BiLSTMs although the difference is not as
pronounced as the difference between character-based
and word-based models. The BiLSTMC model has a
significantly better WER and CER, but the BiLSTMW
model actually has a worse WER, CER and BLEUC
compared to LSTMW .

The conclusion of this is that the quality improve-
ments of using BiLSTMs instead of LSTMs is small or
non-existent in this setup. Based on these initial results
we decided to further investigate and improve the
LSTMW model for the next experiments.

Feature Extraction

Based on the initial results and many experiments
where the batch size, feature extraction, model size,
LSTM parameters, and Beam Search were changed we
ended up with a model equal to LSTMW from initial
results performing radically better.

The major changes that improved performance was
done in the AM. First, a batch normalization layer
before the convolution was added. Second, peephole
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Model Layers Feature Size WER CER BLEUC BLEUW
M 31 3 Mel 1600 14.8 10.9 96.4 84.6
M 31 3 Log Mel 1600 13.7 10.3 97.2 85.9
M 31 3 MFCC 1600 14.4 10.8 96.6 85.2

Table 6.3: Quality results of FE experiments with word-based uni-directional LSTM models.

connections were added to the LSTMs. Third, the LSTM
size was increased to 1600 to avoid the under-fitting
problem from previous experiments. Fourth, the stride
of the convolution was reduced to two which enables
the model to output more words. Finally, a forget-bias
equal to the dropout rate was set on the internal state of
the LSTMs. The training procedure was also changed
so that when the validation loss is not improved during
the last 1000 iterations, the checkpoint of the model is
loaded and the training continues with a lower dropout
and forget-bias. The dropout and forget bias was set to
50% at the start of training and was decreased two times
first to 30% at around the 2500 iteration and then to 0 at
the 9400 iteration. When serving the model the Beam
Search width was reduced to 1, effectively changing
the Beam Search algorithm to a best-first search. This
reduction reduces the latency of the served model but
with a chance of producing lower quality results.

The quality results of the model with various feature
extraction methods are seen in table 6.3. The WER, CER
and BLEU for the three variations of M31 are very simi-
lar, but in all metrics the Log Mel model is slightly bet-
ter than the two other models. The reason that the Log
Mel model performs better than the MFCC model could
be because some of the important information from the
sound are discarded when using MFCCs. As mentioned
in chapter 2 section 3.1, MFCCs consists of 13 features
per frame whereas Log Mel consists of 64 features per
frame, hence Log Mel could potentially carry more in-
formation than MFCC. It is important to note that more
features are not necessarily better, which is evident from
the quality difference between Mel and Log Mel which
both have 64 features per frame. Using Log Mel instead
of Mel lowers the WER from 14.8 to 13.7, hence doing
FE does not only lower the amount of data but also has
an impact on the final quality of the output.

Number of Layers

The final modification of our models is testing with
a different number of LSTMs layers. Table 6.4 shows
that when the number of LSTM layers in the model

is increased to seven, while decreasing the layer size
so that the total number of weights in the model is
approximately the same, the results become even better.

Comparing the WERs of the models presented in this
section to the WERs in table 6.1, it can be concluded that
the quality of the best models in this project performs
similarly to related work that do not use a language
model. The datasets used in the related work are differ-
ent and several models use further processing after the
AM such as language models, hence the performance
scores cannot be compared directly.

If we compare the models in table 6.4 to the models
that use the same amount of training data as our
models in table 6.1, then it is seen that the models
in our project performs better than the related work
with the same amount of training data. This could be
because the models trained in the other papers have
a too high capacity for the size of the reduced dataset.
For instance Deep Speech 2 [Amo+15] builds a model
with a capacity suitable for a large training dataset,
hence when the training dataset is reduced to 1% of
this dataset, the model overfits which makes the WER
worse than it would have been if they built the model
specifically for the small training set.

Human Evaluation of Challenging Input

Looking further into the results of M33 with Log Mel
FE, 40 random files that have 0 WER and 40 files that
have 1 WER were selected for a manual investigation of
challenging input. These files were all listened to and
classified with the different labels shown in table 6.5.

The first labels are Male, Female and Unk. Mozilla
have noted that 41% are male and 10% are female in
their dataset [Moz18], the remaining 49% are unlabeled.
This matches the distribution found in both the correct
and the wrong classifications in the results. The results
show that the system does not appear to be biased with
regards to gender since it performs similarly on both
genders.

The Noisy label is the count of files with a large
degree of noise in the recording. Here it is evident
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Model Layers Feature Size WER CER BLEUC BLEUW
M 32 1 Log Mel 4800 17.4 14.1 92.2 81.1
M 31 3 Log Mel 1600 13.7 10.3 97.2 85.9
M 33 5 Log Mel 960 10.5 7.8 100.9 92.3
M 34 7 Log Mel 685 14.1 10.4 97.2 86.4

Table 6.4: Quality results of different number of uni-directional LSTM using Log Mel.

that it is harder to classify the recording with noise.
It is expected that noisy input impedes the quality of
the model, which was also reported by Deep Speech 2
[Amo+15] and LAS [Cha+15] as seen in table 6.1. By
including more noisy recordings in the dataset or by
adding noise to the existing recordings, the model’s
quality performance on noisy input could be improved.
The results presented here indicates that the WER could
be reduced by doing so.

The Accent label describes whether the speaker in the
recording has a heavy accent. A heavy accent is defined
as a pronunciation that significantly deviates from the
norm of the dataset. The count shows that it is difficult
for the system to convert speech with heavy accents to
text. The training dataset contains several different ac-
cents, hence the model is trained to work on different
accents, but the results here show that the model has
not been able to adapt completely to all accents. This
problem could be alleviated in two ways. One way is
by sampling the training dataset based on accents, so
that an equal amount of all different accent categories
are given as input. In this way the model would not be
trained to recognize one accent better than another ac-
cent. The problem of this approach is that if the model
has to generalize to all accents, the average WER may
be lower. Another way to alleviate the problem could
be by building separate models for different accents. In
this way, a user of the system could choose the accent
before sending data through the system. The problem
with this approach is that the accent would have to be
labelled before converting speech to text, hence it is not
speaker independent as defined in chapter 2 section 2.

Next label Fast describes if the sentence is uttered fast.
It is evident that this is a challenge for our system. The
challenge could be handled by decreasing the frame
step size during FE, so that more frames are generated
from the same files. In this way, the acoustic model
could have a more fine-grained processing of the input
words even with fast speakers. Another idea to solve
the challenge is to use data augmentation of the training

Correct Wrong
Male 29 27
Female 11 10
Unk 0 3
Noisy 2 7
Accent 0 6
Fast 4 14
Correct 40 37

Table 6.5: Features from 40 random files with cor-
rect output sentences and 40 files with the com-
pletely wrong output sentences.

dataset so that the speech pace is accelerated, enabling
the model to learn the faster utterances with more data.

Finally, Correct describes if the sentence spoken is
equal to the labeled sentence. This is wrong in three files
of which two do not contain sound and one contains
someone yelling "hosar uda" whereas it should have
been "a line of flame high can be seen in the atmosphere".

4 Efficiency versus Quality

An efficient model producing high quality results is pre-
ferred over an inefficient model producing low quality
results. Often the most efficient model is not the one
producing results of highest quality. Phrased differently,
there is a trade-off between efficiency and quality. By
using the metrics defined in the previous sections, this
trade-off can be quantified.

The latency and quality of selected high performance
models are visualised in fig. 6.4. The figure is based on
data from the experiment where 24 concurrent requests
are sent to the model. All elements of the test dataset
are sent to the model and from this the average latency
in seconds and WER are calculated. The models have
the same sizes as defined in table 6.4, which means that
the five-layer models have lower size per layer than the
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single-layer model.
The figure shows that M33 with Log Mel FE is outper-

forming the other models on quality with a lower WER
but M34 is slightly more efficient with a lower latency.
This means that M33 is the preferred model if a low er-
ror rate is needed and M34 is preferred if low latency is
needed.

The three variations of M31 are positioned in a cluster
in fig. 6.4. Looking closer at the models, it appears
that the WER is distributed as defined in section 3.2
and the latency is different depending on the FE. Using
Mel, which is the simplest type of FE, the latency is
highest. Using Log Mel, which has the same amount of
extracted features as Mel, the latency is slightly lower.
Using MFCC, which is the FE with fewest extracted
features, the latency is lowest. This suggests that the FE
method influences the latency of the model, where more
extensive FE with fewer extracted features lowers the
latency. It should be noted that the latency differences
are very small and so are the WER differences, hence
FE does not have the most significant impact on neither
quality nor latency.

M32 with Log Mel FE has only a single LSTM layer,
but it has both the lowest latency and highest WER of
the models in fig. 6.4. It could be expected that models
with a lower number of layers have lower latency, but in
this case it seems to be the opposite. The reason for this
could be that the size of the LSTM has been increased
disproportionately compared to the models with more
LSTM layers, but looking at the size of the file contain-
ing the saved model parameters it is concluded that the
single-layer model has more saved parameters than the
other models. The WER of M32 is lower than the mod-
els with more layers, hence the extra parameters of M32
do not result in better quality. The conclusion of this
is that more parameters does not necessarily give better
quality, but it increases the latency.

The M34 experiment was conducted after looking at
the tendency from models M31-33, indicating that more
smaller layers had both better latency and quality. It is
shown in fig. 6.4 that this tendency does not continue.
The latency falls at the cost of higher WER when
increasing the number of LSTM layers from five in M33
to seven in M34.
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Figure 6.4: Latency vs WER of selected models.



7 | Future Work

This thesis has described the design and implemen-
tation of an ASR system. Several ideas on how to
improve the implementation or experiments of the
system emerged throughout the project. This chapter
describes the best ideas for future work within ASR
that could improve the performance or evaluation of
the performance.

The chapter is divided into different sections that
each constitute a category of future work. The first
section is Quality Improvements, which includes ideas
that could further improve the performance of the
model by achieving a lower WER and by being able
to handle more diverse and noisy inputs. The second
section is Training Efficiency where ideas for improving
efficiency of training the models are presented. The
third section is Serving which has suggestions of how to
achieve lower latency for requests to the served model
and how to improve the scalability with regards to the
number of concurrent users. The final section is Mea-
surements describing measurements and visualizations
that could improve the understanding of performance
of the models.

1 Quality

The first thing one could do to improve the quality of
the current best performing word-based model would
be to continue trying different parameter settings. Doing
so is time consuming as it takes up to or longer than
a day to train a single model, hence the parameters
chosen for the model and training process should
be well thought-through. A possible solution is to
train the model on smaller amounts of data thereby
reducing the time it takes to fit the model to the training
data. The downside to this is that models with large
capacities tend to overfit small amounts of training
data. The solution to the overfitting is smaller models
with smaller capacity, but then the models would not fit
to the full dataset making the smaller models measure-

ments inaccurate for the larger dataset. The tendency
to overfit with a model that have a large capacity can
for instance be seen in Deep Speech 2 [Amo+15], also
seen in table 6.1, where the large model performs worse
when reducing the amount of training data without
changing the model.

A second element to work with would be data aug-
mentation as mentioned in chapter 2 section 4.7. Most
of the related work, for instance Chan et al. [Cha+15],
rely on data augmentation for improvements in perfor-
mance and increasing the robustness of the system.

A third option would be to improve the output
hypothesis with a language model, mentioned in
chapter 2 section 3.3. Most related work [Amo+15;
Han+14; Cha+15] show performance measurements
with and without language models applied. The
language model clearly improves the quality of their
WER. This indicates that our model would benefit from
a language model as well. For the language model
to work with our setup, it could be included in the
Beam Search replacing the default heuristic function. A
concrete modification of Beam Search and how to use it
is described in Scheidl, Fiel, and Sablatnig [SFS18] with
an open-source implementation on GitHub [Sch19].
The solution describes a heuristic function that is based
on a combination of the output of the inference model
and the language model score. With this solution,
experiments determining the efficiency of different
language models and the resulting WER could be
conducted.

A fourth option would be to lower the difficulty of
the training. Deep Speech 2 [Amo+15] describes the
difficulty of a file as the length of the file, categorising
shorter audio files as easy and longer audio files as
harder. The model initialization improves if trained
first on easier elements and then afterwards train on
progressively harder elements. Deep Speech 2 names
this learning strategy SortaGrad, and an implemen-
tation of this technique is to: First, sort the first few
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iterations of the dataset based on the difficulty, which is
the length of the audio file. Second, batch similar audio
length samples together while training. Doing this will
result in faster training because there is less padding
on similar length files. Furthermore, it improves the
convergence of the model’s parameters because it trains
on the easy elements first [Amo+15, p. 7].

Further potential improvements of the quality could
be possible if the model was changed to use other
approaches. One of these approaches could be the
attention based model mentioned in chapter 3 [Bat+17]
and SMLTA [Gro19]. The only changes needed for this
would be modifications of the inference model to an
attention based model and replacing the loss function.
Other newer ASR systems just published in this field
at ICASSP [ICA] show a trend towards these types of
networks as well as adversarial networks for generating
challenging inputs for the ASR systems.

2 Training Efficiency

Computations on GPUs have to be optimized differ-
ently than optimized operations on CPU. This resulted
in a performance drop in this project where we used
CPU optimized LSTMs trained on GPUs. While it
is briefly mentioned in chapter 4 section 1.2 that we
did try cuDNN LSTMs for better optimized GPU
performance we did not use it in the end.

Another training efficiency improvement is to reduce
the amount of padding used on training elements when
batching elements together. The strategy used in this
report was to pad all elements to the same length. All
elements were padded to 300 frames length and each
frame was 32ms resulting in 9.6 seconds for each file.
Comparing this to the average length of the sound files
of 4.1 seconds it can be concluded that 5.5 seconds of
padded values were processed too much per file on av-
erage. One strategy could be to batch and pad similar
lengths together to smaller sizes reducing the amount
of padding like in the SortaGrad technique from Deep
Speech 2 [Amo+15].

Mixed position training mentioned in chapter 4 sec-
tion 3.4 is also a potential improvement for the training
efficiency [Mic+17]. The technique was employed in
one of the inference models, but with low performance
most likely due to incorrect implementation. The
reason why this was not further investigated is because
mixed position training does not improve performance
on the GTX 1080 Ti cards [Per19], but for future work

it makes sense since the GPUs are moving towards
greater support for the 16-bit float operations [NVI18].

3 Serving

The serving of our model is using the basic features of
TensorFlow Serving, and could be further improved by
applying some of the more advanced features such as
hardware acceleration, batch dispatching, and service
distribution.

Hasan [Has19] describes how to improve TensorFlow
Serving by compiling it. Compiling does not in itself
improve performance, but depending on the CPU and
compile flags the performance could be improved. All
of the flags mentioned here are CPU instruction set
extensions that allow for Single Instruction Multiple
Data (SIMD) operations. One of the compile flags is
Advanced Vector Extensions (AVX) or AVX2 that allows
optimized vector calculus which is used a lot in neural
networks for multiplying matrices. The TensorFlow
installed from Docker or Pip for Python, which is
used in this project, was compiled with the AVX flag.
Another interesting compile flag is Fused Multiply-Add
(FMA) which executes a multiplication and an addition
together. Another optimisation is Streaming SIMD
Extensions (SSE) flags, specifically SSE 4.1 and SSE 4.2
since these are supported by RebelRig. Since the CPU
on Sim uses the Ivy Bridge micro architecture, it can
only use the AVX optimisation while RebelRig is able
to potentially benefit from all of the above-mentioned
compile flags with its Skylake micro architecture.

Another improvement of TensorFlow Serving is to
include batching of elements from requests following
the guidelines from TensorFlow [Ten18] and Hasan
[Has19]. This exploration of batching on the served
model could be done both on CPUs and GPUs and the
experiment results could be compared to the serving
on the CPU described in this thesis. Another way to
further this chain of thought would be to distribute
the serving for instance by load balancing between
different machines serving the model. All of the above
points would add to the scalability of the serving by
improving throughput on the setup enabling more
concurrent request.

Another direction would be to prioritise the latency
of the served model. This could be done by optimizing
the model for faster execution. One approach could be
to reduce the size of the model layers thereby lowering
the amount of calculations needed from one inference
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maybe at the cost of lower quality.
It would also be interesting to look at streaming

sound to the server, resulting in a stream of results in
real time. The simple implementation of this would be
to window the sound using an appropriate windowing
strategy such as tumbling or session windowing, and
sending each window to our model for inference
[Ros18]. Tumbling windows are non-overlapping time
or count based windows [Kip+17], that in this case
would be based on a specific number of samples in
the audio. This would take the input and slice it into
equal size windows. This has the risk of cutting a
window in the middle of a word. A more advanced
windowing strategy that could avoid this problem
while also increasing performance could be Session
Windows. Session windows are windows that react on
events by sending the window when specific events
occur [Ros18]. This could be done by only sending
sequences of frames that contained sound starting
the window slightly before and ending it after. This
could be done through a filter that would start and
end windows if there is no amplitude in the recording.
Taking this one step further the system could be trained
for keyword spotting (KWS) instead to determine what
to include in a request [CPH14]. This is the same
technique employed by virtual assistants for instance
Alexa [Ama], where "Alexa" is the keyword that the
system constantly listens for.

Another direction would be to stop using the central-
ized server approach and look at deploying the model
to mobile devices. This could be done using TensorFlow
Lite [Ten19a] [ZK18, pp. 34-35]. This would remove
the overhead of sending requests over the internet, but
would suffer from the slower speed of the processing
units on mobile.

4 Measurements

Using different and more measurements could provide
insights into the models’ performance and what steps
could be taken to further understand the models.

To further the understanding of the effect of different
parameters, the correct measurements have to be em-
ployed. A measurement that is not used is to plot and
study the alignment of the outputs with the audio files.
This is shown for instance in Battenberg et al. [Bat+17].
The way it is shown is the frames from the feature
extraction are aligned with the the words or characters
that are inferred in the model. This gives insights

into when the models output the words compared
to the sound in the input. This could provide useful
information since the model’s output is not necessarily
aligned with the utterances.

Another direction for future work could be changing
the model back to a character-based model. Related
work almost exclusively make character-based models
[Han+14; Amo+15; Cha+15; Bat+17; GSW19]. This is
because a word-based model is limited to the specific
vocabulary that it is trained to use. This means that
word-based models receiving many out-of-vocabulary
words is expected to have lower WER compared to
character-based models.

The system is already able to switch between
character-based and word-based output, but the cur-
rent results from the character-based models are worse
than the word-based ones. We believe that improve-
ments in the output could be made with minor changes.
The step size in the FE could be reduced, since most
of the other papers use a step size of 10ms [Han+14;
Amo+15; Cha+15; Bat+17; GSW19]. The frame size
could also be changed to see the effect of doing so.
This could be interesting, because the effect of different
frame sizes in ASR models has not been reported in any
related work.



8 | Summary & Conclusion

This master’s thesis describes the implementation
of an automatic speech recognition (ASR) system. The
thesis starts with a chapter providing the background
of ASR. It describes the basic components of an ASR
system, which is feature extraction (FE), acoustic model
(AM) and language model (LM). An ASR system with-
out FE and LM could be designed, where the AM is an
end-to-end model taking audio as input and outputting
characters or words. Different variations of this kind
of model exist, for instance the LM could be omitted
or the FE could be of different types. The difference
between Mel, Log Mel, and MFCC is explained in the
background chapter and this is later used in the design
of the models. The AM has traditionally been based
on statistical models, but research in recent years has
focused on deep learning. The fundamentals of deep
learning is explained, which includes Feedforward
Neural Network (FFNN), Convolutional Neural Net-
work (CNN), Recurrent Neural Network (RNN), Long
Short-Term Memory (LSTM), and Bidirectional LSTM
(BiLSTM). Furthermore, different activation functions,
Connectionist Temporal Classification (CTC) loss, dif-
ferent optimization algorithms, batching, regularisation,
and the basic architecture of TensorFlow are explained.

After the background chapter, related work within
the field of ASR is presented. Baidu has delivered some
of the central contributions to recent research in ASR.
The systems are referred to as Deep Speech 1 [Han+14],
Deep Speech 2 [Amo+15], and the unpublished SMLTA
system [Gro19]. Deep Speech 1 and 2 are the inspiration
for the system implemented during this project. Other
related work presented is Google’s Listen Attend
Spell (LAS) [Cha+15] and IBM’s suggested hardware
architecture for GPU systems [Dün+18].

The experimental setup is defined based on soft-
ware setup, workload setup, and hardware setup.
The software setup explains how the FE and AM is
implemented with TensorFlow. Different inference
models referred to as M<number> are defined and how

to serve the combined FE, AM, and Beam Search is
explained. The served ASR model has a gRPC interface
[gRP19] which is later used to serve requests during
the experiments. The workload setup uses the Mozilla
Common Voice dataset [Moz18], which is identified as
continuous speech with independent speakers using a
medium sized vocabulary. The dataset is preprocessed
by filtering the elements based on frame length and by
padding the elements to the same length. The hardware
setup is done on two different systems, referred to
as RebelRig and Sim. Both systems have four GPUs,
which are utilized by duplicating the model to the
GPUs and calculating the updated weights on the CPU.
A data pipeline where a batch of elements is prepared
on the CPU while the GPUs are processing the previous
batch is described. This data pipeline enables faster
training by utilizing the resources better.

Two different kinds of experiments are conducted
in this project. The first is GPU utilization during
training and the second is efficiency and quality of
the served model. By training different models on a
single GPU and measuring throughput, it is concluded
that increasing the batch size during training results in
more elements processed per second and that larger
models have lower throughput. Furthermore, it is
concluded that the throughput is better using the
PCIe3x16-connected GPU rather than the PCIe2x1-
connected GPU. When training on several GPUs, a
close to linear relation is found between throughput
and number of GPUs. It is further concluded that when
training on Sim, the GPUs are fully utilized, hence it is
compute-bound whereas RebelRig is memory-bound
because of the PCIe2x1 connection.

The experiments on the served model inspect the
latency, throughput, and quality of the different models
trained during the project. Latency is defined as the
time it takes for the client to be serviced by the model.
A linear relation between audio length and latency is
observed and the average latency is stable when the
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number of concurrent users is less than the number of
CPU cores in the system. Throughput is defined as the
volume processed over time. The conclusion is that
when serving the model on the Sim machine, it can
handle up to 40 real-time concurrent users using the
best performing model.

The quality of the models defines how close the out-
put sentences are to the target sentences. It is measured
using Character Error Rate (CER), Word Error Rate
(WER), and Bi-Lingual Evaluation Understudy (BLEU).
The WERs of the best models implemented during this
project are comparable to the WERs reported in related
work, although a different dataset is used, hence the
WER cannot be compared directly. The character-based
models perform worse than the word-based models
and the word-based uni-directional LSTM model
performs better than the word-based BiLSTM model.
Furthermore, different FE methods are experimented
with and the Log Mel FE demonstrates better results
than Mel and MFCC. The WER of a model with five
LSTM layers are lower than the WER of models with
fewer layers, but increasing the number of layers to
seven does not improve the WER further. By looking
at the efficiency in relation to the quality of the models,
it is concluded that fewer layers in a model does not
result in lower latency and that the WER is not neces-
sarily high for models with low latency. The trade-off
between efficiency and quality is observed with M34,
which has low latency and moderately higher WER,
and M33, which has moderately higher latency and
lower WER.

The project has given rise to several ideas for future
work. The future work chapter presents ideas of how
to improve quality, training efficiency, model serving
and experiment measurements. Future work with these
ideas has the potential to improve performance of the
ASR systems presented in this thesis.
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A | Costs

Part Name Price
RebelRig
GPU’s RTX 2070 4 x 4.200kr
CPU i7 6700 k 2.350kr
Motherboard AsRock H110 Pro BTC+ 700kr
RAM Corsair Vengence LPX DDR4-2666 16 GB 719kr
PSU Corsair HX1200 1.099kr
SSD 512GB SATA SSD 650kr
Risers Kolink Rendering Mining Kit 3 x 172kr
total — 22.834kr

3.412$
SIM
GPU’s GTX 1080 TI 4 x 7.000kr
CPU XEON E5-2630V2 2 x 5.000kr
Case, PSU, etc — 19000kr*
SSD 512GB SATA SSD 650kr
HHD 1TB SATA HDD 300kr
Ram 126 GB Ram 126 * 50kr
total — 64.250kr

9.598$
* Talked with the one buying it

Table A.1: Hardware setup cost of individual parts.

53



B | Inference Models

The models used in this project were made in order over time. Some models are extremely close to duplicates but
the overall architecture of the system was changed in between some of these similar models. The reason why we
keep all of them is to keep the ability to change which model is served without having to change the code behind,
and to remember what types of models have been used and tested.

Nr Model Name Layers Description
1 inference 1 Convolutions width 5, going from size 13 -128;

Batch norm;LSTM 512 static size;LSTM 512 static
size; LSTM 512 static size; Relu;

2 inference2 Same as above, but 3 Convolution going straight
width 5, going from size 13 - 64 - 128 - 256;.

3 single_LSTM Single LSTM layer;
4 single_conv_single_LSTM Same as above, with a single Convolution 13 - 64

and extra Batch norm.
5 three_conv_single_LSTM BatchNorm; 3 Convolution going straight width 5,

going from size 13 - 64 - 128 - 256 with batchNorms;
LSTM;

6 three_conv_three_LSTM BatchNorm; 3 Convolution going straight width 5,
going from size 13 - 64 - 128 - 256 with batchNorms;
3 LSTM layers with BatchNorm;

7 single_LSTM_act Same as model 3 with Relu on each layer
8 single_conv_single_LSTM_act Same as model 4 with Relu on each layer
9 three_conv_single_LSTM_act Same as model 5 with Relu on each layer

10 three_conv_three_LSTM_act Same as model 6 with Relu on each layer
11 deeep_1 Copy of Deep speech 1 [Han+14] architecture with:

BatchNorm; Convlution 5 wide, from 13 to 64; 3
Feed forward layers; LSTM (Not bidirectional like
the paper but forward);

12 deeep_1_act Same as model 11 but with Relu activation

Table B.1: Inference models part one.

54



APPENDIX B. INFERENCE MODELS Page 55

Nr Model Name Layers
13 single_simple_LSTM Same as model 3.
14 single_output_layer only the feed forward layer to alphabet size
15 single_conv Convolution with width 5 going from 13 - 64; Batch-

Norm;
16 five_LSTM Five layers of LSTM with batch normalization;
17 three_LSTM Three layers of LSTM with batch normalization;
18 three_LSTM_norm_act Three layers of LSTM with Relu activation and

batch normalization;
19 conv_stride1_three_LSTM_norm_act Batchnorm; Convolution width 8 from inputsize to

256; three LSTMs with Relu and Batch normaliza-
tion;

20 conv_stride1_three_LSTM_norm_act_drop50 Model 19 with Dropout of 0.5 between each layer
21 conv_stride1_three_LSTM_norm_act_drop25 Model 19 with Dropout of 0.25 between each layer
22 conv_stride1_three_LSTM_norm_act_drop10 Model 19 with Dropout of 0.1 between each layer
23 conv_stride1_seven_LSTM_norm_act Same as model 19 but with seven LSTM layers, as

specified in Deep speech 2[Amo+15]
24 conv_stride1_seven_LSTM_norm_act_drop50 Same as model 23 but with 0.5 Dropout between all

layers
25 conv_stride1_three_LSTM_norm_act_float16 A mixed posistion model, using 16 bit precision

with the same architecture as model 24.
26 conv_stride1_Bi_LSTM_norm_act Bidirectional LSTM model with three layers of

LSTMs
27 conv_stride1_Bi_LSTM_norm_act_drop_70 Same as 26 with dropout set to 70 percent
28 conv_stride1_Bi_LSTM_norm_act_

No_batch_norm_start
Same as 26 with no batch normalization in the start-
ing layer this was later found out to reduce the mod-
els training and precision.

29 Bi_directional_LSTM_3 Same as 28 but bidirectional LSTM.
30 Uni_directional_LSTM_3 Same as 18 but with parameters for setting convo-

lution width, stride. At this point in time we also
changed the convolutions from using padding to
not padding elements.

31 Uni_directional_LSTM_3_Peep_CUDNN Same as 30 but with activated peephole in the
LSTMs, forget gates in the state of the LSTM set to
the same value as dropout. This model was also try-
ing out CUDNN editions of RNN, while it did pro-
vide a slightly faster training it was not ideal for the
saving and serving on CPU, so it was chaged back
to LTMS block cells.

32 Uni_directional_LSTM_1_Peep_CUDNN Same as 31 but with 1 LSTM layers
33 Uni_directional_LSTM_5_Peep_CUDNN Same as 31 but with 5 LSTM layers
34 Uni_directional_LSTM_7_Peep_CUDNN Same as 31 but with 7 LSTM layers

Table B.2: Inference models part two.



C | Sim Setup

Figure C.1: Sim system hardware architecture [Sup18].
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D | Inference Model 33

Figure D.1: Overview of AM M33 from TensorBoard.
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E | Program Arguments

Batch Size: The number of elements per batch during
training for each GPU used, meaning that the ac-
tual batch size is equal to the number of GPUs used
times this argument. The elements are batched us-
ing TensorFlow’s dataset type.

Iterations: The number of iterations before the training
is forcefully terminated. This stopping condition is
in addition to the stopping condition based on the
validation dataset’s loss over the last t iterations of
training.

Learning Rate: The learning rate of the optimization al-
gorithm.

Trainer: The trainer/optimizer used for gradient de-
scent. We have used four different trainers for this
project AdaDelta, AdaGrad, SGD and Adam as de-
scribed in chapter 2. The optimization algorithms
are numbered from one to four and the number
given as argument specifies which optimizer to use.

GPUs: A list of numbers that corresponds to individual
GPUs. For instance, if the list [1, 3] is given, GPU
1 and GPU 3 are used. The purpose of specifying
GPUs is to enable sharing of the GPU cluster with
other users and to enable resource scalability exper-
iments.

Number of Files: Specifies how many files from the
training dataset are used during training. This was
especially useful during initial stages of the project
to quickly test whether the system was able to fit
to a small part of the training dataset. If the model
was not able to converge on a small part of the train-
ing dataset, we did not expect it to converge on the
entire dataset.

GPU Memory Percentile: The maximum percentage of
memory allowed to be used on each GPU. This was
also used to share resources with other users but

also to benchmark since the default settings of Ten-
sorFlow is to allocate all memory.

Model: The inference model used. Each model is re-
ferred to by a number.

Network Size: A multiplier that enables scaling of the
network size.

Dataset Cutoff Length: The maximum length of an in-
put. This is also used to pad all elements of a size
that is lower to the same size.

Dataset Selected: Specifies which type of feature file to
load. It is specified by a number that corresponds
to a type of feature extraction, for instance MFCC
or Mel Spectrograms.

Experiment Name: Specifies the name of the saved
model parameters to distinguish between the mod-
els of different experiments.

Add Trace: This argument enables tracing of the net-
work to see memory usage and time consumption
of different elements.

Stride: The stride of the convolution layer.

Encoding Quality: A parameter that sets the floating
point precision of floats to either 32-bit or 16-bit.
This is further explained in section 3.4.

Dropout: Dropout rate during training.

Vocabulary: Defines whether to use words or charac-
ters as output.

Convolution Width: Specifies the width of the convolu-
tion.

Load Checkpoint: The path to a model checkpoint.
This is to enable reloading of a model so that if train-
ing is interrupted, it can be restarted.
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