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Abstract
Compression is an effective technique for fitting data in available memory, reducing I/O across
the storage-memory-cache hierarchy, decreasing energy consumption, and increasing instruction
parallelism. Modern machine learning (ML) systems exploit the approximate nature of ML and
mostly use lossy compression via low-precision floating- or fixed-point quantized representations.
The lossy techniques have an unknown impact on convergence and model accuracy compared
to full precision training and create trust concerns. Furthermore, exploratory refinement
of such lossy decisions is difficult to define in declarative ML pipelines. To use declarative
language abstractions, lossless matrix compression applies lightweight compression schemes
to numeric matrices and enables compressed linear algebra operations such as matrix-vector
multiplications directly on compressed representations.

Traditional ML pipelines containing feature transformations and model training are
increasingly extended into so-called data-centric ML pipelines with additional preprocessing
steps for data cleaning, augmentation, and feature engineering to create higher-quality results.
Given the trend towards increasingly complex composite pipelines, it is hard to infer the impact
of compound ML pipeline primitives. Therefore, multiple variations of stacked techniques
must be evaluated to find the best combinations. The evaluation of many pipeline variations
is expensive but contains data redundancy that is exploitable via compression techniques.
However, current compression techniques struggle to detect these redundancies.

Individual pipeline stages, such as data cleaning, augmentation, and feature transformations,
collect data characteristics, such as distinct items, column sparsity, and column correlations.
These properties are core components in selecting compression schemes. Current compression
algorithms redundantly rediscover these statistics in compression planning while compressing
pipeline intermediates. Some systems already exploit redundancy using sparsity exploitation
on intermediates, which is a form of lossless compression. This thesis aims to evolve sparsity
exploitation to general redundancy-exploiting lossless compression that exploits common values
instead of only zero values. Existing work on lossless compression and compressed linear algebra
enable such exploitation to a degree but face challenges for general applicability.

To solve the challenges, we introduce a workload-aware compression framework comprising
a broad spectrum of new compression schemes to exploit different redundancy patterns
and compressed kernels that can process long sequences of instructions with compressed
intermediates and limited decompressions. The framework seamlessly fits into declarative
ML pipelines by returning equivalent results to uncompressed linear algebra. We propose
new feature transformation and engineering techniques that leverage information about the
structural transformations collected in preprocessing pipelines. Furthermore, we develop a
lightweight morphing technique adapting compressed intermediates to their subsequent linear
algebra workloads. Instead of using a memory-centric approach that optimizes compression
ratios, our workload-aware compression summarizes the workload of an ML pipeline and
optimizes the compression scheme to minimize execution time.

All presented contributions are integrated into Apache SystemDS, an open-source ML
system for the end-to-end data science lifecycle. We evaluate our implementation on micro
benchmarks of components, end-to-end ML pipelines, and distributed federated linear algebra.
Our evaluation shows asymptotic improvements in operations performed on workload-aware
compressed data. The asymptotic changes and data size reduction translate to real-time gains
on individual operations on real datasets up to 10,000x compared to uncompressed and 20,000x
compared to previous compressed linear algebra. Furthermore, end-to-end ML algorithms
improve by 6.6x, and a data-centric pipeline reduces power consumption by 3.6x.





Zusammenfassung
Kompression ist eine effektive Technik zur Unterbringung von Daten im Hauptspeicher,
zur Reduktion von I/O entlang der gesamten Speicherhierarchie, zur Verringerung des
Energieverbrauchs sowie zur Erhöhung der Instruktions-Parallelität. Moderne Systeme für
Machine Learning (ML) machen sich die approximative Natur von ML zunutze und verwenden
zumeist verlustbehaftete Kompression in Form quantisierter Gleit- oder Festkommazahlen
mit verringerter Genauigkeit. Der Einsatz verlustbehafteter Techniken hat jedoch im
Vergleich zu verlustlosem Training einen unbekannten Einfluss auf die Konvergenz und
Genauigkeit von Modellen, woraus sich Vorbehalte bezüglich der Vertrauenswürdigkeit ergeben.
Außerdem ist die explorative Verfeinerung solcher verlustbehafteten Entscheidungen im Kontext
deklarativer ML-Pipelines schwierig zu definieren. Um deklarative Sprachabstraktionen nutzen
zu können, wendet verlustlose Matrix-Kompression leichtgewichtige Kompressions-Techniken
auf numerische Matrizen an und ermöglicht Operationen der linearen Algebra, wie Matrix-
Vektor-Multiplikation, direkt auf den komprimierten Repräsentationen.

Traditionelle ML-Pipelines bestehend aus Feature-Transformationen und Modell-Training
werden zunehmend zu so-genannten daten-zentrischen ML-Pipelines erweitert, welche zu-
sätzliche Vorverarbeitungsschritte zur Daten-Bereinigung, Daten-Augmentation und zum
Feature-Engineering enthalten, und somit die Qualität der Ergebnisse erhöhen. Angesichts des
Trends zu immer komplexeren kompositen Pipelines ist es schwierig für Nutzende, den Einfluss
zusammengesetzter ML-Pipeline-Primitive vorherzusehen. Daher ist eine Auswertung von
Variationen zusammengesetzter Techniken erforderlich, um die beste Kombination zu finden.
Die Auswertung einer hohen Anzahl von Pipeline-Variationen ist aufwendig, führt jedoch
auch zu Redundanz in den Daten, welche durch Kompressions-Techniken und komprimierte
lineare Algebra ausgenutzt werden kann. Existierende Kompressions-Techniken haben jedoch
Schwierigkeiten diese Redundanzen zu erkennen.

Einzelne Pipeline-Stufen, wie Daten-Bereinigung, Daten-Augmentation und Feature-
Transformation, ermitteln Dateneigenschaften, wie die unterschiedlichen Werte, Spalten-
Sparsity und Spalten-Korrelationen. Diese Eigenschaften sind auch Kernbestandteile für
die Auswahl von Kompressions-Techniken. Existierende Kompressions-Algorithmen berechnen
diese Statistiken erneut im Zuge der Planung der Kompression von Zwischenergebnissen
von Pipelines. Einige Systeme nutzen Redundanz bereits mithilfe von Sparsity-Exploitation-
Techniken aus, welche eine Form von verlustloser Kompression darstellen. Das Ziel dieser
Arbeit besteht in der Weiterentwicklung von Sparsity-Exploitation zu einer allgemeinen
Ausnutzung von Redundanz basierend auf häufig vorkommenden Werten anstelle nur von
Null-Werten. Existierende Arbeiten zu verlustloser Kompression und komprimierter linearer
Algebra ermöglichen eine solche Ausnutzung bereits zu einem gewissen Grade, bringen jedoch
Herausforderungen bezüglich der allgemeinen Anwendbarkeit mit sich.

Um diese Herausforderungen zu adressieren, führen wir ein workload-bewusstes
Kompressions-Framework ein. Dieses umfasst ein breites Spektrum neuer Kompressions-
Techniken zur Ausnutzung verschiedener Redundanz-Muster sowie komprimierte Kernel zur
Verarbeitung langer Instruktions-Sequenzen mit komprimierten Zwischenergebnissen bei
eingeschränkter Dekompression. Unser Framework fügt sich nahtlos in deklarative ML-Pipelines
ein, indem es zu unkomprimierter linearer Algebra äquivalente Ergebnisse zurückgibt. Wir
stellen neue Techniken für Feature-Transformation und -Engineering vor, welche sich in
Vorverarbeitungs-Pipelines gesammelte Informationen über die strukturellen Transformationen
zunutze machen. Außerdem entwickeln wir eine leichtgewichtige Morphing-Technik, welche
komprimierte Zwischenergebnisse an ihre nachfolgenden Lineare-Algebra-Workloads anpasst.
Anstelle eines auf die Optimierung der Kompressionsrate ausgerichteten speicher-zentrischen



Ansatzes fasst unser workload-bewusstes Kompressions-Framework den Workload einer
ML-Pipeline zusammen und optimiert die Kompressions-Technik für die Minimierung der
Ausführungszeit.

Alle präsentierten Beiträge sind integriert in Apache SystemDS, ein quelloffenes ML-System
für den gesamten Data-Science-Lebenszyklus. Wir evaluieren unsere Implementierung mittels
Mikrobenchmarks, durchgehenden ML-Pipelines sowie verteilten, föderierten Lineare-Algebra-
Workloads. Unsere Evaluation zeigt asymptotische Verbesserungen für auf workload-bewusst
komprimierten Daten ausgeführte Operationen. Diese asymptotischen Veränderungen und
Reduktionen der Datengröße führen zu Realzeit-Gewinnen einzelner Operationen auf realen
Datensets von bis zu 10,000x verglichen mit unkomprimierter und 20,000x verglichen mit
existierender komprimierter linearer Algebra. Außerdem erzielen wir eine Verbesserung von
durchgehenden ML-Algorithmen von 6.6x und reduzieren den Energie-Verbrauch einer daten-
zentrischen Pipeline um 3.6x.

vi
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1
Introduction

Figure 1.1: Morse Code [214]

An early example of data compression is Morse code,
invented in 1838 [245]. Morse code’s compression scheme
is constructed of multiple layers. The binary signal of on
and off contains a sequence of ternary base building blocks
called dots, dashes, and pauses of varying lengths. Letters
can be deciphered from the ternary signal via codewords.
To shorten the duration of sending messages and, in turn,
the compression ratio, the codewords were designed such
that the duration of sending frequent letters is low, e.g., ’e’
uses a single dot.

Modern Compression: In modern data management
and machine learning (ML) systems, compression is a
well-established and effective technique for fitting data in
available memory, reducing I/O, energy [109], and memory

bandwidth usage [194, 74], and increasing instruction parallelism [243]. Data management
systems with declarative interfaces almost exclusively rely on lossless compression to ensure
correct results and leverage lightweight techniques [59, 56] that offer a balance of compression
ratios and (de)compression speed that determine operational performance.

ML and Compression: In contrast to lossless compression in data systems, ML systems
exploit the approximate nature of ML—especially for mini-batch training of deep neural
networks (DNN)—and mostly use lossy compression such as quantization (i.e., static or
dynamic discretization) [91, 259], sparsification (clipping of low quantities) [93, 176], new data
types (e.g., bfloat16, TF32) [202, 128, 176], dimensionality reduction [116] and sampling (few
step/epoch mini-batch training [221], or sampled batch training [181]). An extreme example
is 1-bit quantization of gradients [209]. However, lossy compression introduces unknown
behavior on new datasets and models, which creates trust concerns and requires an exploratory
trial-and-error process to find the right settings and sometimes tradeoff time for accuracy [238].
Therefore, any lossy decisions in ML have to be set by users or automatically evaluated.

ML Pipelines: Modern machine learning (ML) training comprises more than choosing
ML algorithms or neural network architectures, and hyper-parameters. Data-centric ML
pipelines extend traditional ML pipelines of feature transformations and model training
by additional preprocessing steps for data validation [206, 95], data cleaning [212], feature
engineering [203], and data augmentation [196, 197, 232, 131] to construct high-quality datasets
with good coverage of the target domain. These techniques can substantially improve model
accuracy [131, 212, 248, 67], generalizability [7], and other measures like fairness [203, 219].
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1. Introduction

1.1 Motivation and Challenges of Compressed Linear Algebra
There are several motivational factors for using compressed formats in linear algebra operations.
However, remaining challenges from related work hinder broader adoption. This section outlines
these characteristics in the context of linear algebra-based data-centric ML pipelines.

Sources of Redundancy: The iterative nature of finding good data-centric ML pipelines
causes both operational redundancy (e.g., fully or partially repeated preprocessing steps) [190]
as well as data redundancy [23]. The data redundancy is present in similarly compressible
patterns across pipeline allocations from small cardinalities, repeated values, sparsity, and
column correlation. Besides this natural data redundancy, data-centric ML pipelines create
additional redundancy. Examples are new data points or feature modifications and systematic
transformations such as missing value imputation by mean or mode and data cleaning by
robust functional dependencies [66]. While beneficial for model quality, iterative selection of
such data-centric ML pipelines is expensive. Exploiting the data redundancy in pipelines is
appealing if compressed allocations can minimize redundancy though pipeline components
and support pipeline workloads without decompression.

Lossless Redundancy-exploitation: A common approach for exploiting data redundancy
without quality degradation is lossless compression. Sparsity exploitation is a classic
redundancy-exploitation technique and is currently a major trend across the stack from
hardware [176, 178], over systems [34, 156, 215], to algorithms [93, 81, 199]. It exploits sparsity
(many zero values) in data representations, typically in the form of matrices or tensors by
avoiding processing zero values via dedicated data layouts, sparse operators, and even ML
algorithm formulations [251]. We can observe sparsity in many real-world use cases, such as
traffic flow, web page ranking and user ratings of products. Sparsity also naturally occurs
in many linear algebra programs, for instance, when solving partial differential equations or
performing feature engineering via one-hot encoding [215]. However, sparsity-exploitation
is limited to zeros and does not exploit other sources of redundancy. While sparsity is
a dominating topic in the field, compression techniques that apply lightweight database
compression schemes can exploit other redundancies, such as a low number of distinct values
or long sequences of repeated values, while also supporting linear algebra operations directly
on the compressed representation, also called Compressed Linear Algebra (CLA) [74, 147, 77,
241, 130].

The Problem: Despite Compressed Linear Algebra’s compelling property of executing
operations directly on compressed representations, some limitations and missing functionality
hinder general applicability and, therefore, are problems addressed in this thesis. To help
identifying these problems, we start with the motivation and goals from CLA [74, 75, 73].

Uncompressed

Compressed

25 GB/s
per node

1 GB/s per node

Execution 
Time

Uncompressed 
data fits in
memory

Compressed data 
fits in memory

Data Size

Time 
(operations performance)

1

Space 
(compression ratio)

2

Figure 1.2: Goals of CLA [73]

The Original Goal:
There was two optimiza-
tion objectives of the orig-
inal implementation of
CLA [74]. 1 Compressed
linear algebra operations
performance. 2 Good
compression ratios to fit
larger datasets into mem-
ory. Figure 1.2 shows the
consequence of improving
these objectives. The x-axis signifies data size growth, and the y-axis is theoretical execution
time. The figure shows that when data fits in memory, the memory bandwidth of processing
data is high at 25 GB/s. However, the bandwidth drops to 1 GB/s once the data spills to
disk. While the numbers are not the same in newer systems, the theory applies both to
local execution with vertical jumps in execution time on total local memory and distributed
bounded by total aggregate cluster memory. Optimizing for 2 enables CLA to keep more data
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in memory, delaying the need to spill intermediates to disk. Optimizing for 1 improves the
operational gains relative to the uncompressed performance once the uncompressed data no
longer fits in memory. Importantly, the figure also shows that once the compressed data is
spilling to disk, compressed execution expects better scaling than uncompressed execution
because compressed data is less bottlenecked by I/O.

Local Focus: While these goals are important, they miss exploiting the single-node local
potential of CLA, which can be better than uncompressed operations. However, we need to
solve a few challenges to acquire this improvement.

Compressed Operations & Structures: Perhaps obvious, the first key challenge is
designing compressed structures that allow efficient execution of operations, preferably without
decompression. The compressed operations should be faster than their uncompressed matching
operations. CLA’s performance target of individual operations was similar to uncompressed
linear algebra when the uncompressed data fit in memory. However, it is key for CLA
adaptation to have faster operations in compressed space for in-memory execution. If the
operations are not quicker, then solving the rest of the challenges would have less impact,
and CLA would mainly be applicable when data does not fit in memory. Another challenge
for operational performance is finding compression schemes excellent at exploiting dense
compressed matrices or sparse compressed matrices that encounter densifying operations.
Many current CLA techniques [241, 157, 77, 147, 73, 74] do not support this use case of which
most default to decompression.

Compressed Intermediates and Sequences: Another challenge is to extend the
number of operations performed on compressed intermediates. Operations should aim towards
returning compressed results to solve this challenge. While there previously was some support
for long sequences of operations in compressed space, extending this capability as far as possible
should improve the overall performance. For instance, if the compressed data can be read from
disk without decompression it would be possible to skip the compression and start processing
directly. Furthermore, if possible, operations should return compressed representations with
minimal changes and maximum reuse of input data structures of compressed data.

Workload-aware Compression: A final challenge, and perhaps most importantly, the
framework should automatically choose where to introduce compression in programs and what
compression techniques to use based on the workload. Similar to specializing data structures
for specific algorithms and workloads, we should automate the data layout of compressed data,
choosing encoding schemes that optimize for the performance of a given workload. A holistic
workload adaptation would include the online compression costs, the linear algebra-based
computational workload, and data access patterns of operations to improve the I/O throughout
the memory hierarchy.

Compressibility: While solving these challenges does improve the potential of using CLA
in more use cases, it does not matter if there is no potential to exploit redundancy in data.
Therefore, to ground the research, we performed a potential analysis.

1.2 Potential Analysis
We aim to quantify the potential of exploiting structural and value-based data redundancy.
To this end, we first summarize data characteristics of real-world datasets and investigate the
potential runtime impact of pushing compression through pre-processing primitives.
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Figure 1.3: Relative Number of Distinct Values in Datasets.
Columns Sorted by the Number of Distinct Values.

1.2.1 Distinct Values
The number of distinct values d is a common statistic to exploit in compression [57, 168],
especially in string columns. Dense Dictionary Compression (DDC) [74, 23, 168, 240, 18], also
called DICT [61] in the database community, constructs a dictionary of d values and encodes
values as integers referencing positions in the dictionary. Figure 1.3 shows several datasets
with their ratio of d to rows per column. Some columns contain less than 0.001% distinct
values. Compressed operations that exploit the distinct values can reduce execution time in
such cases by 99.999% [23]. Unfortunately, data does not always contain a low number of
unique values, motivating additional compression techniques.

1.2.2 Lossy Transformations
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Figure 1.4: Lossy Quantization Effect on Values.

Feature engineering can reduce the
number of distinct values d via lossy
transformations such as binning, feature
hashing, or quantization. In binning, we
distinguish static and learned [258, 257]
quantization schemes. An example of
a static scheme is equi-width quantiza-
tion, which scales the input values to
discretized bins in the range of min-max
with Q∆(X) = X̂ = ⌊∆(X−Xmin)/(Xmax−Xmin)⌋. The resulting number of distinct values is
d ≤ ∆, where ∆ is the configured number of bins. Increasing ∆ generally improves the accuracy
of the approximation of the original data. ∆ = 256 is a common configuration, which allows
encoding values in UINT8. In contrast, learned schemes [257] use various techniques—such
as quantiles or neural networks—to find optimal quantization boundaries (smaller bins for
high-frequency value ranges). Equi-height quantization maps input values to buckets by ∆
quantiles. Figure 1.4 shows the relative loss of equi-width and equi-height quantization. The
x-axis varies ∆ and the y-axis shows the mean absolute error: MAE(X, X̂) = ∑︁|X|

1 |xi−xî|/|X|.
The upper and lower bounds of the blue and orange colored areas are the min/max absolute
errors. Quantization and incurred errors show a linear relationship (log-scale plots) of roughly
MAE(X,Q∆(X)) ≈ 2 ·MAE(X,Q2∆(X)), meaning if ∆ doubles, the MAE error is halved.
Learned schemes can improve the MAE using higher ∆ or optimize for other goals such as
model accuracy [257], compression size, or Pareto-optimal combinations.
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1.2.3 Non-numerical Data
Categorical values are commonly encoded with one-hot encoding, whereas text is often
represented via word embeddings. Feature transformations producing numerical representations
through binning, feature hashing, recoding, and one-hot encoding have the potential to compress
encoded values. Some are lossy categorical transformations that reduce d. Feature hashing
maps values to ∆ buckets, and for Natural Language Processing (NLP), one can limit the
number of unique words or tokens (d) for encoding via lemmatization [63] and stemming.
Figure 1.5 shows the potential of compressing one-hot-encoded columns using dictionary
compression compared to different sparse representations. The three sub-plots systematically
vary the number of distinct values, rows, and columns of inputs (with base parameters 1,000
distinct values, 100k rows and 5 columns). The output shape is [#rows, #columns · d], and
sparsity is 1/d. The y-axis shows the in-memory size in bytes of the encoded output matrix.
Using a dense matrix for one-hot-encoding shows worse performance in all cases beyond very
few distinct values or rows. Sparse layouts such as Compressed Sparse Rows (CSR) [22],
COOrdinate matrix (COO) [22], and Modified CSR (MCSR) [33] yield good compression in all
cases. Sparsity exploitation performs exceptionally well when scaling d. However, compared
to a DDC compression, all the other solutions allocate more memory. The dampened size
increase for Dense in the middle plot is because the d increases until 1000 and not above.

1.2.4 Correlation
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Figure 1.6: Relative d Increase Co-coding Features in
Adult: Original and One-Hot-Encoded Features.

Another property that impacts
compressibility is the correlation
between columns. Figure 1.6
shows the relative increase in the
number of distinct tuples when
combining different columns in
the Adult dataset (we removed
one column with d > 20k). The
left sub-figure shows the original
features, while the right shows
the one-hot-encoded categorical
features. Let di be the number of distinct values in column i and di,j the number of distinct
tuples of co-coded columns i and j. Then, each cell ci,j in the figure shows ci,j = 2di,j/(di + dj)
to demonstrate the relative increase of values contained in tuples by combining the columns.
White (with cij = 1) indicates columns with perfect correlations. Perfect correlation can
only happen when two column groups have the same d as in di = dj , and when combined,
dij does not increase. Perfect correlation happens, for instance, in the case of all pairs of
one-hot-encoded columns originating from the same column. Any other combination of columns
where di > dj has a minimum bound of di, j = min(di, dj). In the case where di > dj and all
values of di only correlate with a single distinct value (a many-to-one relationship) in dj , cij ’s
minimum bound is 2di/(di + dj). The upper bound of any combination is ci,j is 2didj/(di + dj),
indicating all pairs of distinct values occur when combining the columns. Co-coding algorithms
use ci,j and other properties to determine if combining columns into single encodings is better
than leaving them apart in separate compression schemes.

5



1. Introduction

1
2
3
4

Ti
m

e 
[s

]

Ad
ul

t

3
6
9

12

C
at 16

32
48
64

C
ri

t1
0M

7
14
21
28

C
ry

pt
o

2
4
6
8

K
D

D 1
2
3
4

Sa
la

ri
es

2
4
6
8

Sa
nt

an
de

r

2
4
6
8

H
om

e

I/O Detect Schema Apply Schema Transform Encode
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Losslessly Encoding Different Datasets.

The Co-coding Problem: A greedy co-coding algorithm requires O(m2) time (where m
is the number of columns) to discover these correlated columns. Ideally, co-coding would first
group one-hot-encoded features with perfect correlation and subsequently other correlated
features. Rediscovering the correlation between columns is non-trivial and potentially very
expensive since each combination of columns has to be analyzed (potentially on a sample).
The rediscovery is further complicated by ultra-sparse matrices and the existence of sparsity-
exploiting compression schemes, where the full co-coding potential is often not analyzed in
favour of fast compression. Interestingly, Figure 1.6 shows a perfect correlation between the
original features 3 and 4, while the one-hot-encoded version does not perfectly co-code on all
sub-combinations of those columns (see zoomed-in area). Instead, this perfect correlation is
only detectable via evaluations of larger sub-groups. Therefore, pushing compression through
feature transformations has the potential for both runtime reduction and improved compression.

1.2.5 Pre-processing Time
Figure 1.7 shows the execution time of pre-processing the different datasets. We read datasets
in CSV format from disk, marked as I/O. In case of unknown data types, schema detection and
application aim to specialize generic strings into integer and floating point data types where
possible. We detect data types on a sample and apply them during data conversion. As a final
step, the heterogeneous frame is transformed into matrices through feature transformations.
There is potential to improve all these stages via compression. First, reading compressed
representations from disk reduces reading overheads. Second, frames saved with a schema
can skip value type detection operations. Third, compressed formats that directly support
feature transformations could improve performance. Therefore, a combined pre-processing
and compression analysis could significantly reduce the end-to-end execution time depending
on the algorithm(s) and data used. We further extend this train of thought with new ideas
on feature transformation techniques that can process compressed inputs directly without
decompression to reduce execution time and memory consumption.

1.2.6 Energy Efficiency
4.6 nJ 3 nJ

Load L3 into L2 L2 L1 Op

0.3 nJ

Figure 1.8: Energy Costs of Addition Operation
(64 bit) in CPU Cache [160].

Transporting data from remote machines,
from storage, or even from RAM into cached
memory consumes a lot of energy [109]. The
actual operations only draw a tiny fraction of
the overall power. Therefore, if high energy
efficiency is required, the application must
have very good data locality [109]. As an
example, Figure 1.8 shows the overhead of an instruction fetching data from a CPU cache L3 to
register processing. In the example, the actual operation takes 0.3 nJ and the transfer dominates
with 7.9 nJ. If the instruction loads data from RAM, the cost increases by more orders of
magnitude [109]. By compressing data, we can reduce the amount of data transported through
the memory hierarchy, improving data locality and reducing the overall energy consumption.
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1.3 Related work of Workload-aware CLA
Workload-aware CLA connects to multiple related fields, including Lossy and lossless
compression of matrices and heterogeneous frames, database compression and physical design,
and techniques for data reorganization and adaptation of allocations with semantic equivalence.

Lossless Matrix Compression: Naturally, the closest area of related work is lossless
matrix compression. General-purpose data-parallel frameworks like Spark [255] or Flink [16],
scientific data formats like NetCDF and HDF5 [97], and storage managers like SciDB [217]
and TileDB [180] also support compression, but decompress block- or partition-wise for
operations. Sparsity exploiting compression had full software package support already in 1990
with SparseKit [201] using specialized data structures to exploit non-zero values. Sparsity
exploitation is now commonly supported in most linear algebra frameworks such as IntelMKL
(now behind OneAPI) [117] and CuSparse [175] but still in active research [215, 125, 242,
127].Early work includes traditional sparse matrix representations (e.g., CSR, CSC, COO) [201]
while more recent work in e.g., TACO [127] automatically compiles sparse kernels for tensor
linear algebra. Sparsity exploiting compression techniques by Kourtis et al. already leveraged
dictionary coding [130, 124], as well as delta and run-length encoding [124]. Subsequent work
on compressed linear algebra (CLA) focused on online compression and entire ML algorithms,
where CLA [74, 75] uses column compression for batch algorithms, and TOC [147] uses tuple
compression for mini-batch algorithms. Other works exploit different properties such as integer
time series values [30], floating point time series [150], and bounded ranges of floats [152]. Recent
work on grammar-compressed matrices reports operation performance proportional to the
compressed size, specifically the CSRV representation [77], while others presented impossibility
results (worst-case) for efficient matrix-vector multiplications on grammar-compressed matrices
such as Lempel-Ziv [6]. Factorized learning [133, 207] further pushes operations of ML
training algorithms through joins and can be seen as a specialized form of lossless compression
exploiting available schema information [177] to avoid materializing denormalized tables. These
factorization ideas can also be implemented on top of ML systems [50] by representing joins
via structured selection matrices. The most studied type of compression is integer-based
compression [134, 57, 60, 142] while floating points with exponent and mantissa pose some
difficulties. XOR [195] used by Facebook in Gorilla [187] is a technique specific for floating point
compression, followed by advancements in Chimp [150] and even more recently in ALP [10].

Lossy Compression and Sampling: In the context of mini-batch DNN training and
scoring, there is a broad adoption of lossy compression. First, quantization discretizes floating-
point into fixed-point representations such as UINT8 for scoring [91]. Mainstream ML systems
rely mostly on homogeneous lossy compression because they retain regular, dense data access.
First, a common choice is uniformly encoding and processing all floating point values in
reduced precision [115]. Many systems explore uniform encodings via techniques like mantissa
truncation [5, 27] and new data types with different trade-offs of range and precision [176].
Examples include Google’s bfloat16 (1+8+7 bits) [202, 44, 123], Intel’s Flexpoint (shared subset
of exponent bits) [128], and NVIDIA’s TF32 (1+8+10) [176]. Another common technique
is static min/max binning (equi-width) [91] and learned quantization schemes (equi-height
via quantiles) [259, 261]. Such quantization schemes are also used for efficient data transfer
in ZipML [259] and SketchML [120]. With residual accumulation at the workers, some
systems reduce communicated values to a single bit [209, 110]. The challenges of training
with low 8-bit FP precision are addressed with chunk-based accumulation and stochastic
rounding [237]. Other leverage sparsification or value clipping (omit small values) [93, 176],
dimensionality reduction like auto encoders [116] and classic algorithms such as PCA [184]
and t-SNE [107], sampling in BlinkML [181], DNN activation compression in COMET [121],
sampling or coresets [11] to train with fewer mini batches [221], and progressive compression
schemes [238, 132]. Unfortunately, the unknown impact on results creates trust concerns,
requires trial and error, and is problematic for declarative ML pipelines. Recent work in
MLWeaving [238] introduced data structures for efficiently extracting different granularities
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for simplifying exploration, while BlinkML [181] estimates the minimum sample size to satisfy
an accuracy constraint.

Database Frame Compression: There is a large body of work in compressing
heterogeneous data in the data management literature. Tabular data in databases is commonly
compressed in schemes that exploit entire columns having the same datatype [1, 218]. Systems
most commonly employ variations of five basic encodings techniques [57, 60]: Frame-of-
reference (FOR) [88], delta encoding (DELTA) [264], dictionary encoding (DDC) [168, 240, 18]
in database compression more commonly called DICT [61], run-length encoding (RLE) [3] and
null suppression (NS) [142, 240]. BtrBlocks [134] is a recent work showcasing the effectiveness
of nesting these simple compression techniques with highly efficient SIMD decompression.
White box compression [85] similarly apply recursive compression. General-purpose heavy-
weight compressors are also applied to compress any modality of data. Examples include
Snappy [90] and Zstd [76]. Most systems support storing their data in various compressed
formats that can combine multiple encoding schemes. Examples are Parquet [52], HDF5 [97],
and SciDB [216] for storage, as well as Arrow [53] for transfer, e.g., Arrows DDC encoded
data [54]. There are many dedicated compression techniques for specific value types, for
instance, for strings in Pattern-based Compression (PBC) [260] that decomposes string values
via entropy encoding (Huffman coding [111, 194]), and FSST [41]. These fine-grained methods
share some commonalities but are orthogonal techniques that, in many cases, can be stacked
like in BtrBlocks [134].

Workload-aware Physical Database Design: Work on lossless matrix compression
like CLA [74, 75] and TOC [147] was inspired by lossless compression in column stores and
related query processing on compressed data. Extensions include patched encoding schemes
(separate handling of exception values) [264], order-preserving dictionary coding [28, 153], and
exploitation of such schemes in query processing [193, 28, 136, 21]. The handling of default
values used in this thesis is also related to header compression in SAP HANA [204], and
the fast-mode column add in Teradata [223]. The performance/compressed-size tradeoffs of
existing schemes are, however, strongly data-dependent [108, 59]. For that reason, existing
systems largely rely on conservative selection heuristics [136, 3, 2], but there is also work on cost
modelling [59, 38, 48], and balancing query performance and storage size with different column
group projections and encodings [230]. Some adapt similarly based on sparsity [14]. Many
systems rely on combining cost modelling of compressed size and query performance [231, 39,
48, 62, 126] and many techniques rely on an offline compression for selection and adapting to
workloads [37]. Some systems generates workload traces to use for compression decisions [183].
Once compression choices are reflected in the costs, they influence what-if physical design
tuning. Compression-aware design tuning [126] and FITing-Tree [82] showed how index
compression can affect index selection choices, and learned partitioning schemes maximize
partitioning pruning [253] (e.g., via small materialized aggregates [162]). Furthermore, recent
work introduced memory-budget-constrained offline compression for selecting encoding schemes
based on estimated costs and compression ratios [36], and related data partitioning across
storage tiers [139, 234].

Data Reorganization: Data reorganizing, also called morphing, is closely related to
this thesis. Prior work like database cracking by Idreos et al. [192, 102, 114, 113, 112] also
dynamically reorganizes data based on query workload. Other work dynamically chooses (1)
the physical design of storing data [20], (2) where to place tuples on distributed servers (e.g.
Clay [210]), and (3) online deduplication of stored blocks [250]. MorphStore [57, 101] proposes
a morphing wrapper enabling on-the-fly recompression of intermediate results with lightweight
compression schemes for relational algebra.
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1.4 Contributions and Structure of the Thesis
This thesis addresses the challenges of compressed linear algebra by extending and combining
related work and developing new compressed operations with the following contributions.

Background: Chapter 2 clarifies the background and introduces prerequisite knowledge to
understand the contributions to compressed linear algebra. The chapter separates others’ work
from this thesis by including an extensive section that covers the previous work’s techniques
and approaches to performing compressed operations. The covered topics include a detailed
walkthrough of lightweight, heavyweight, lossless, and lossy compression techniques focusing
on techniques applicable to compressed operations. We continue with existing algorithms
and frameworks for performing operations directly on compressed formats. Followed by data-
centric ML pipeline components focusing on feature engineering of numeric matrices and
transformations of heterogeneous datasets. Finally, we cover the basics of federated learning
architectures for distributed computation on federated data.

Workload-aware Compression: In Chapter 3, we introduce the design and imple-
mentation of workload-aware CLA aimed at compressed operation performance better than
uncompressed while achieving good compression ratios to fit larger datasets in memory and
reduced I/O. The internal objective for selecting compression schemes focuses on minimizing
execution time while factoring in compression, compressed operations, conditional control flow of
programs, and potential I/O to better adapt to data, operation, and cluster characteristics. We
describe new compressed operation strategies and techniques focusing on delaying computation
and reusing compression structures in operations to exploit redundancy. These compressed
operations can, in many cases, return compressed intermediates, improving the operational
performance relative to the number of distinct values.

A Case for Compressed Preprocessing: Feature transformations encode heterogeneous
categorical and numerical features into purely numerical matrices [189]. This conversion is a
rich source of information about structural data redundancy. For example, one-hot encoding
a categorical feature requires determining the dictionary of d distinct items and creating d
perfectly correlated binary features. Data-centric ML pipelines iteratively evaluate several
permutations of engineered features and different transformations. Therefore, we make a case
for pushing compression though feature transformations and feature engineering to the sources
in Chapter 4. Holistic support requires compressing heterogeneous frames in a form amenable
to compressed feature transformations and compressed I/O without decompression. Since
data and workload characteristics of enumerated ML pipelines may differ, there is a need for
morphing [101, 62] compressed intermediates into workload-optimized representations [23].

Asynchronous Federated Compression: While our focus is compressed linear algebra,
we also introduce contributions to federated ML training and scoring in Chapter 5. Federated
ML typically consist of a parameterserver setup with a centralized aggregation of model weights
on a server and distributed training on federated workers. A key objective of federated ML is
to train centralized models without consolidation of federated data. The chapter describes a
federated backend extension to SystemDS that supports parameterserver workloads and linear
algebra programs. Interestingly, federated workers’ workloads fit nicely with asynchronous
compression because it allows workers to adapt their data allocations to their specific workloads
in low utilization periods between federated requests.
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2
Background

Algebra studies the generalization of arithmetic operations and has been leveraging various
representations since time immemorial. These representations together with algorithms allow
us to perform calculus to help understand the world around us.

History: An interesting early example is Rhind Mathematica papyrus [12] by Ahmose,
who coincidentally is the first math author we know of. The papyrus contains a handwritten
dialect of hieroglyphs to show recipes for various algebraic tasks similar to current definitions
of programs to compute our linear algebra operations. It even contains an approximation of
π = 4(8/9)2 = 3.16. However, the efficiency of calculation using the hieroglyphs, in many ways
equal to Roman calculus, is slower than the current decimal numeral system because large
numbers were difficult to calculate with [154].

Figure 2.1: Rhind Mathematica Papyrus [12], CC BY-NC-SA 4.0 [13]

Modern: Modern ML systems use abstractions to perform linear algebra operations on
scalar, vector, matrix, or higher-dimension tensors while leaving the underlying data structures
up to systems’ implementations [31]. This decoupling from underlying data allows systems to
optimize the data representations together with algorithms. Improving the adaptability of
algorithms and data for linear algebra instruction sequences.

System Integration: As an example, SystemML [86, 32, 35, 227] compile entire programs
via a high-level declarative language abstraction of linear algebra instructions with R-like
syntax. The design allows users to declare their intent without defining specific underlying
runtime allocations or execution modes. Underneath the declarative language abstraction,
the system automatically decides on runtime strategies such as parallelizing loop bodies [35],
using distributed operations [35], and/or leveraging hardware accelerators [188]. The system
chooses specialized data structures such as arrays, trees, sparsity exploiting matrices [201], or
specialized formats such as compression [74, 147, 41, 143, 135]. Data structures can be further
specialized with different value types, e.g., floats, strings, chars, or integers.

Outline: This chapter tries to cover the background of the contributions of the thesis.
We start with a brief cover of influential lightweight compression schemes and techniques in
Section 2.1 explaining elements of compressing dense matrices through sparse compression and
standard to complex related lossless compression techniques. After the lossless background, we
cover various existing compressed linear algebra frameworks in Section 2.4. Existing work on
adapting compression to workload in Section 2.5, before finalizing the chapter with a summary
of standard ML preprocessing and feature engineering in Section 2.6.
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Figure 2.2: Basic Dense and Sparse allocations of a Matrix

2.1 Lossless Compression Techniques
The section focuses on lossless data representations, starting with uncompressed formats. We
focus primarily on techniques that allow direct access to underlying unique values, considering
the lossless compression techniques as data structures surrounding values.

Notation: We use the following notation: A is a matrix of n rows and m columns. A
specific cell is Ai,j , while a row is Ai,: and a column A:,j . The set of non-zero cells in A is
given by A ̸=0. The non-zero cells in row and column are Ai, ̸=0 and A ̸=0,j . If the i-th row, is
empty, we use Ai,∀0 formally defined as ∀j, Ai,j = 0, while if it contains at least one non-zero
Ai,∃x where x ̸= 0.

The Dense Baseline: In many systems, dense vectors, matrices, or tensors encode
into a single continuous array. For matrices, the single array typically is in a row-major or
column-major format, as shown in Figure 2.2. Row-major allocations map values from rows
into the array, following i ·m + j. While column-major oppositely assigns columns via i + j · n.
When traversing the structure, it is beneficial for cache efficiency to process in the same major
direction. The memory size of these dense arrays scales linearly with the number of cells
O(nm). A dense double matrix therefore scales in bytes according to 8nm.

Blocking: A common limit of the number of cells in a matrix is 231 − 1, the limit of, for
instance, TensorFlow that uses 32-bit signed integers to index elements. Java-based programs
similarly cannot allocate basic arrays larger than unsigned integers. The limitation can be
overcome by allocating more arrays, with two nested arrays for matrices, that slice a matrix
up into different numbers of rows and columns that can be processed—and (de)compressed—
independently through an indirection.

Sparse Layouts: Sparsity exploitation allows processing using only non-zero values.
Figure 2.2 shows three common layouts COO, CSR and MCSR [201, 117, 175, 215, 125]. COO
stands for COOrdinate and allocates additional index structures that encode coordinates of
non-zero values. The coordinate format typically uses tuples of coordinates in a single array,
with pairs of row-column coordinates, an approach used in TensorFlow [92], or in two separate
row index and column index arrays, which we use in SystemDS. The allocation of COO scales
linearly with non-zeros, O(A̸=0). However, each value costs more with two offsets and one
value. For a COO double matrix, it translates to 16 bytes per value with two integers and
one double. CSR stand for Compressed Sparse Rows and has an identical row index array to
COO. However, instead of allocating column offsets, it allocates a list of indexes that point
to rows (ptr), indicating the start of row indexes of individual rows. CSR scale according to
O(A̸=0 + n), with a fixed cost for each row in the ptr index. The Compressed Sparse Columns
(CSC) scheme swaps ptr with pointers to column starts and row indexes with column. CSC
has a fixed added cost in the number of columns, O(A̸=0 + m). For a double matrix, each
non-zero in CSR or CSC costs 12 bytes (one integer and one double). A downside to CSR
is that ptr and row index arrays reallocate if we want to add a single non-zero value to a
row. DCSR [46] is a technique to avoid the extra overhead of rows with no non-zeros by
adding an extra array containing row numbers with non-zero values. MCSR is a modifiable
CSR representation that allows adding and removing values to the CSR compression without
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2.1 Lossless Compression Techniques

reallocation. MCSR solves this by independently allocating row indexes and values in different
arrays. Each row can then resize on demand in MCSR. With these techniques, the minimum
sparsity required for memory improvements is 50% nnz with COO and 66.6% nnz with CSR
or CSC.
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Figure 2.3: DDC scheme

Dense Dictionary Coding (DDC): Dictionary encod-
ing [74, 168, 240, 18, 130, 124] compresses data by exploiting
the number of unique elements, d. A column-major DDC
encoding contains two parts: a dictionary with the d value
tuples ∈ Ai,: (shown in Figure 3.2 as a dictionary with three
tuples), and an index structure with a row-to-tuple mapping
(e.g., dictionary position). DDC is dense because each row
input is assigned a code in the map, making the length of
the mapping array always equal to the number of rows. The
mapping array must use a bit-width #B = ⌈log2(d)⌉ that
can encode integers ≥ d. The in-memory size of DDC scales
according to O(dm + #Bn) where dm is the number of values contained in the dictionary
multiplied by the number of columns, and #Bn is the number of rows multiplied by the used
bit-width. If the underlying values are double, then the DDC in Figure 3.2 can be encoded
with two bits bit-width because d = 3, resulting in an encoded size of 2 · 10bits + 8 · 3 · 2byte
rounded up to nearest byte 51 bytes, much smaller than the dense 10 · 2 · 8 = 160 byte.
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Figure 2.4: CSR-VI scheme

CSR-VI: CSR-VI [130] is a compound technique that
uses dictionary encoding on the values of a CSR compressed
representation. CSR-VI is the first of many examples of
leveraging the compound effects of two techniques on top of
each other. CSR-VI uses a DDC scheme that only supports
encoding single values (not tuples). The DDC encoding in
CSR-VI, therefore, is neither row nor column-oriented. It
instead maps each non-zero value. CSR-VI scale according
to d + #B ·A ̸=0 + n, which reduces to O(A ̸=0 + n) because
d <= A̸=0 is guaranteed. In the example, assuming integers
for offsets and pointers and doubles for the dictionary, the
size becomes 4 · 2 + 4 · 5 bytes for the CSR part, and 2 · 5bits + 8 · 3bytes for the DDC part,
totalling 54 bytes, slightly smaller than pure CSR 64 bytes, and much better than dense 160.
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Figure 2.5: FOR scheme

Frame of Reference (FOR): FOR use reference values
to offset encoded values [88]. FOR does not improve compres-
sion alone. Instead, it changes the data into forms amenable
to other compression techniques. FOR can, for instance, be
applied to a full matrix to make it sparse by subtracting the
most common values to keep as reference values shown in
Figure 2.5. The value matrix can then recursively compress
into a sparse format such as CSR. Another variation of FOR,
let’s call it FORL, uses the minimum value of columns as
reference [264]. FORL can compress if the value inputs
are ∈ N as integers, then each N can be encoded with
#B = ⌈log2(max(A)−min(A) + 1)⌉. On the other hand, if the values encoded are ∈ R as
floats, then values have to be recursively compressed via other compression schemes to result
in compression. Accidentally, FORL is equivalent to FOR in Figure 2.5. A downside of both
types of FOR in the context of compressed linear algebra is that it looses direct access to
underlying data, where operations that cannot apply directly to the reference values must
resolve the difference between reference and underlying values to get actual cell values.
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Figure 2.6: OLE scheme

Offset-list Encoding (OLE): In its purest form, OLE [74]
encodes the offsets into a matrix that contains a specific value. It
consists of the three parts shown in Figure 2.6: A dictionary of
unique tuples, an offset list containing offsets of individual tuples,
and a pointer list to indicate each tuples start in the offsets.
This encoding is similar to CSR and is also in the context of the
CLA papers [74], a sparse encoding that skips all zero tuples.
The scaling of OLE is O(dm + z), where dm is the dictionary
cost, and z = (A:,∃x ̸=0) is the number of tuples with at least
one non-zero. CLA extends the basic OLE scheme by encoding
offsets from row block segments of 216 to encode each offset with only two bytes. The blocking
makes the asymptotic scaling worse O(dm + z + db), where db is the cost of the offset pointers
allocated for each unique value for each block segment. On one side, the blocking incurs an
overhead in OLE that is significant only in ultra-sparse cases where there z = 0 in blocks.
On the other side, the blocking improves operation performance, allowing threads to process
different blocks cache consciously and independently.

7 2
0 0
0 0
1 3
1 3
1 3
1 3
7 2
7 2
7 2

Matrix
1 7 2
2 0 0
4 1 3
3 7 2

I-RLE

Values
Run Length

Mapping
Dictionary

Offset And Run

1 0 7 2
2 1 0 0
4 2 1 3
3 0

DDCRLE

0 0 1 7 2
4 7 3 1 3
6 3 4

RLE

Figure 2.7: RLE scheme

Run-length Encoding (RLE): Long se-
quences of the same value commonly occur, and
run-length encoding exploits these repeated values.
There are many versions of RLE, many shown in
Figure 2.7. (1) Independent RLE, I-RLE, where
each run is encoded together with its value. I-RLE
encodes a list of run lengths and a value array of
associated tuples and scales according to O(mr)
where r is the number of runs. However, it is
common to combine RLE with a DDC encoding,
DDCRLE, also shown in Figure 2.7. The downside
of the DDCRLE scheme is the added indirection of the mapping. However, its memory
consumption scales better, O(r + dm), assuming a low number of distinct tuples. CLA [74,
75, 73] choose to opt for a different flavour of RLE encoding, shown as RLE, that avoids the
indirection of a DDC map but still allows storing unique tuples in a dictionary. It consists of
three parts the dictionary of unique values, a pointer array (in orange), and an offset/run-length
array (in green). The pointer array indicates the start and end positions in the run array
of each unique tuple in the dictionary. In Figure 2.7, there are two runs for the first tuple
and one run for the second. The run array works in pairs of two values. The first indicates
the offset from the last run’s end to the start of the next run. The second contains the run’s
length. The RLE encoding is further specialised in sparse processing because the schema
skips encoding zero tuples. Finally, on top of everything else CLA improve RLE by applying
it—similar to OLE—in blocks of 216 making the overall scaling O(dm + r + db) where b is the
number of blocks. While the RLE in CLA [74] encoding is a bit complicated, it makes up for
it in compressed operations.

Constant Encodings: While trivial, it is common to encounter blocks or sometimes
even entire columns that contain a single value. We, for instance, observe constant columns
in algorithms that fit an intercept value. Algorithms can, as a preprocessing step, append a
column of ones to the feature matrix and, without any other changes, fit the intercept values
implicitly. Another instance is in dense layers of neural networks, where instead of adding a
bias after matrix multiplication, we can add a column of ones and an extra row of the weight
matrix containing the bias values. These approaches are correct because of equivalent results
with appended ones as shown in Equation (2.1). Constant encodings are small and scale
according to O(dm). CLA [74] do not use constant encodings and instead rely on RLE.

AW + b =
[︂

A o
]︂ [︄

W
b

]︄
(2.1)
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Figure 2.8: Delta scheme

Delta Encoding: In many ways similar to FOR, delta
compression [124] encodes values as deltas from previous
values. Most commonly, it is deltas from the exact previous
value. However, another variation applies to windows of data
and encodes values relative to the first value in a window.
Figure 2.8 shows an example of delta encoding. Also, similar
to FOR, delta encoding does not improve compression size. Instead, it relies on recursively
applying other compression techniques to its encoded output. Delta encoding is very efficient
in columns with auto-incrementing values because the delta between all rows is equivalent. In
such cases, a column can go from d = n to d = 1, making the delta-encoded values perfect
for RLE or even sometimes constant compression. There are three major downsides to delta
encoding in the compressed linear algebra context. First, we lose direct access to the underlying
values due to indirect additions, invalidating performing non-linear operations directly on
the encoded values. Second, collecting the statistics to analyze delta encoding efficiency is
expensive because we must calculate the delta values. Third, we cannot estimate the delta
encoded size with the same statistics as other compression techniques because the recursive
compressions rely on the statistics from delta encoded values.

CSR-DU: From the same paper as CSR-VI, CSR-DU [130] for CSR Delta Unit, replace the
CSR ptr and row offsets with a compressed byte array called ctl. CSR-DU combine elements
from delta encoding and OLE. Without going into details, ctl contains units of information
that delta encodes offsets between cell positions with non-zero values. It distinguishes itself
from OLE by not using offsets from the beginning but instead deltas between values. CSR-DU
is an interesting example of focusing on compressing the index part of a compressed format
instead of focusing on compressing the values.

Patched: Another compression algorithm family is called patched compression. Patched
compression is another compound technique fused with other compression schemes. The
fused encoding names prepended a P on the different compression algorithms, such as PFOR,
PFOR-DELTA, and PDICT [264]. Patch compression treats values as coded or exceptions.
Coded values are compressed into underlying compression schemes, while exceptions are, as
the name implies, handled extraordinarily in separate data structures and serve as corrections
on decompression. PDICT, for instance, encodes a dictionary with the most common values to
reduce the mapping size from DDC by keeping rare values separated from the DDC dictionary
to reduce the #B used in the dictionary mapping. Patched compression contains a design
decision on how the exceptions overwrite the compressed values. Two common approaches are
to overwrite cells or use exceptions as reference values and add them into cells.

Null Suppression (NS): Null suppression [200, 55] is another technique with many
variations. The basic idea is to exploit consecutive nulls/zeros of individual integer values and
replace them with descriptions of how many zeros there were and where they are located [3].
There are two common approaches to null suppression: packed or individual. An individual
encoding contains a prefix for every value, sometimes called the group-variant [55]. An example
of this prefix is two bits that indicate if a following integer can represented in one, two, three,
or four bytes [3]. A packed encoding chooses a prefix for a block of values, e.g. 32, and
determines a #B per block. The mapping part in DDC is a prime use case for null suppression
techniques. However, null suppression makes variable-length encodings that require additional
indirections to find specific cells. Therefore, we do not use it in this thesis.

Lempel Ziv (LZ): LZ77 [262] and LZ78 [263] are two dictionary inspired compression
algorithms. LZ algorithms compress data by using literals and copy instructions. A literal
contains raw copies of the input, while a copy contains an offset back to decompressed values
and a length indicating how to append seen values. The copy instructions are analogous to
dictionary entries, making the algorithm part of the family of dictionary encoders. To find
equal previously seen data, default LZ compression techniques keep a fixed-length sliding
window, w, to search for matches. The longer the window is, the bigger the compression
potential becomes. However, window size and how diligently it is analyzed for matches dictates
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the computational load of LZ algorithms. An interesting property of LZ compression that is
highly encouraged is to copy lengths that exceed the current position, e.g., copy instructions
with two indexes back and copy ten values. Such a copy instruction implicitly replicates the
last two elements five times. LZ is a base of well-known compression formats, including GIF,
PNG, and ZIP. The best case compression for LZ algorithms happens for empty or constant
files scaling Ω(1), closely followed by short repeated patters that fit within the windows size
O(w). While the worst case is data with no repeated patterns O(n).

0 2 0 0 2 3 0 2 0 2 0 0
Input Tokens

0 → 0 , 2 → 1 , 3 → 2
Base Dictionary

Seq Next Extend Out
0 2 [0, 2] → 3 0
2 0 [2, 0] → 4∗ 1
0 0 [0, 0] → 5 0

[0, 2] 3 [0, 2, 3] → 6 3
3 0 [3, 0] → 7 2

[0, 2] 0 [0, 2, 0] → 8∗ 3
[0, 2, 0] 0 [0, 2, 0, 0] → 9 8

0 E 0

Encode

Figure 2.9: LZW example

Lempel Ziv Welch (LZW): LZW [239] is a
lossless variable length compression technique that
encodes and decodes data by rediscovering dictionary
entries. LZW compression relies on a predetermined
dictionary of all unique single tokens in a dataset. In
byte aligned LZW compression the dictionary can be
filled with all bytes possible (256 unique values), that
does not need to be allocated. Figure 2.9 shows an
example of encoding a sequence of tokens, with the
LZW algorithm. The example starts with the base
dictionary, of all unique tokens 0, 2, and 3. In each row
of the encoding table, we first find the longest sequence
in the dictionary of subsequent input tokens. Then,
we extend the dictionary with the longest sequence
found plus the next token, and output the current
dictionary value. The algorithm loop until the end of
the input tokens is reached. As an extra trick, LZW
can choose to encode the outputs with the a number
of bits according to the size of the dictionary, and each time the dictionary size grows above
powers of two, the output encoding use one more bit. This change is shown in Figure 2.9
with ∗. LZW’s runtime is equal to the length of input tokens O(n), and its worst-case output
encoding is also O(n) and in the best-case (constants) Ω(log(n)). However, LZW’s worst case
memory usage scales linearly with input size for the temporary dictionary extensions.

Grammar-based Compression: Another family of compression techniques is grammar-
based compression, which uses context-free grammar (CFG) to compress data. A CFG
contains a set of rules of two classes: terminals, T and nonterminals, L. A single nonterminal
rule decomposes into one or many other terminals and nonterminals, e.g. L1 → L2T1T2L2.
Terminals do not decompose and contain basic blocks of data. The best possible grammar of any
sequence, length n, is guaranteed of O(n/log2n) [77]. However, finding the smallest grammar
is NP-hard [77], therefore most grammar finding algorithms are greedy algorithms [77].

Entropy Encoding: Another class of compression techniques are entropy encoders. They
adapt to the probability distribution of distinct values. According to Shannon’s theorem [211],
the theoretical optimum is −log2Pi bits for each value in randomly ordered data, where Pi

is the probability of a distinct value di. If all unique values are equally likely, and d is a
power of two, DDC achieves this optimal compression using the same number of bits for each
d. However, equal probabilities are rarely the case. If a compression technique adheres to
Shannon’s theorem, it will scale according to O(∑︁d

i=1−log2PiFi), where Fi is the frequency
di. We mention three entropy encoding techniques Huffman, Arithmetic, and ANS.

7

3 4

7 7 3 4 7
Input

0010110
Encoded

Figure 2.10: Huffman scheme

Huffman: Huffman encoding is a entropy encoding
technique invented by David Huffman in 1952 [111] that builds
a prefix tree based on all distinct values and their frequencies.
The prefix tree encodes meaning in the traversal of the tree.
The Huffman encoding tree’s nodes always contain two child
nodes, where traversing edges towards child nodes corresponds
to setting a bit to zero or one. Meanwhile, leaf nodes are
associated with distinct values. Values are decoded by traversing the prefix tree from the
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root node to the leaves, and similarly, values are encoded by traversing from value leaves to
the root (and reversing the result). The Huffman encoding algorithm constructs the trees by
minimizing the number of edges used for a given the frequency distribution of values. Morse
code might seem similar to a Huffman encoding. However, it is not because Morse code relies
on three signals. If we construct a Morse code tree with only dashes and dots, then some
internal nodes would correspond to a letter, breaking Huffman coding that requires leaves
to be the only source of distinct values. Because traversing the tree use different numbers of
edges, Huffman encoding is a variable length encoding scheme. Huffman encoding can achieve
Shannon’s optimum compression in cases where all properbilities are Pi ∈ 2−ζ where ζ > 0 and
ζ ∈ N. However, because Huffman encoding is a variable-length encoding scheme, decoding
can only happen from the beginning of compression blocks, and random access to specific
indexes of values is not permitted.

Arithmetic coding: Witten et al. [244] (1987) states that ’Arithmetic coding is superior
in most respects to Huffman’. While Huffman encoding returns a stream of bits corresponding
to edges in the prefix tree, arithmetic coding returns a continuously refined infinite precision
R value. Arithmetic coding allows ζ ∈ R, encoding each value without being bit-aligned. If
the frequencies of all values are powers of two, then Huffman encoding produces the same
compressed size. However, when this is not the case, Arithmetic compression produces smaller
encodings. Appendix A.1 shows an example of arithmetic encoding. While the compressed
result from Arithmetic compression is small, it is even more computationally expensive than
Huffman encoding. Witten et al. [244] point out that LZ-like techniques are more appropriate
when the aim is raw speed. Unfortunately, arithmetic encoding, just like Huffman, requires
sequential decompression, making indexed lookups prohibitively expensive.

Asymmetric Numeral Systems (ANS): The final lossless technique presented, and
also the newest in this list from 2013, is Asymmetric Numerical Systems [72]. ANS compress
data into a single (also infinitely scaling) natural number N by continuously appending bits
to the output. Instead of using the actual probability distributions like Arithmetic coding,
ANS use an approximation of the probabilities Pi into a state space L. A large state space L
approximated the probabilities more precisely, giving better compressions. There are three
variants of ANS binary (uABS), range (rANS), and tabled (tANS). uBAS encode only bits,
always reducing the number of unique values to two. rANS approximate P using ranges and
limits memory usage if many distinct values are encoded. However, it adds arithmetic work
for compression and decompression compared to tANS. Finally, tANS approximate P using
a state space L with |L| cells, where each di gets assigned Pi fraction of cells depending on
their relative probability. The state space in tANS enables a finite-state machine construction
that, via lookups, enables fast compression. Interestingly, ANS encode and decode in opposite
directions, meaning if compressed from the beginning, it decompresses from the end.

Limitation: While all the compression techniques mentioned so far can compress data,
there is no guarantee that they will compress. It is quite the opposite, which can be proven
via the pigeonhole principle [145] (also called Dirichlet’s drawer principle [69]). The principle
states that it is impossible to put m pigeons into n containers when m > n without at least
two pigeons in one container. Therefore, let’s say we have a lossless compression technique
and its associated decompression algorithm. Because the compression technique is lossless,
any compressed state has only one decompressed result. Then, let’s imagine we are given all
permutations of k bits (equal to 2k pigeons). Compression implies a reduction in size < k. All
permutations can’t compress because some inputs would compress to the same state. In the
pigeonhole metaphor, there would be more than one pigeon in a container.

Compression Algorithms: While we covered the end compressed format of various
techniques, there are many algorithms specializing in how to compress efficiently. The specifics
of these algorithms are out of scope in this background.
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2.2 Categorization of Compression Techniques
The introduced compression techniques fall into different categories. While all are lossless,
some are more computationally expensive than others or contain limitations that would impact
the performance of compressed linear algebra. We classify these into two categories.

Heavyweight: The heavyweight techniques include the entropy encoders such as
Arithmetic [244], Huffman [111], and ANS [72]. The entropy encoders are heavyweight
because of two properties. First, they introduce a non-trivial overhead in decoding individual
values, and they require sequential and directional decompression, thereby limiting their
flexibility for our use cases. LZ(W) and grammar-based compression are also heavyweight in
previous work on CLA [74]. However, recent work shows promise in fusing LZ or grammar-
based compression with CLA [147, 146, 77]. Related work also classify these techniques as
heavyweight [134, 55].

Lightweight: On the other side, lightweight techniques include Sparse techniques, DDC,
FOR, OLE, RLE, Delta, NS, and Constants. These techniques are arguably simpler, and many
cases have low overhead in lookups in their compressed structures. Furthermore, as a bonus,
most do not require sequential scanning or decompression.

2.3 Compression Systems / Compound Techniques
Only using one compression technique is insufficient to cover many different types of redundancy
in data. Therefore, systems often use compound compression techniques. A classic compound
technique could be DEFLATE [68] that combines the LZ77 [262] variant with Huffman coding.
DEFLATE is used in the GZIP, PNG, and ZIP formats. Some systems are classified as general
compressors such as GZIP, Snappy [90] and ZStd [76], while others choose to specialize in
specific modalities such as text, images, or sound. Examples of specialized compression could be
PNG, MP3 or MP4. We focus on frameworks for "high speed and reasonable compression" [90].

Snappy: Snappy is a compression framework from Google using an LZ77 stream byte-
oriented encoding that compresses blocks in a single pass [90, 89]. Snappy stores literals, which
are uncompressed data, and copies, which are references back into previous decompressed data.
The biggest difference Snappy has compared to LZ77, is the offsets are indicated with 1, 2 or
3-byte offsets.

ZStd: ZStd [76, 51], developed by Meta, compresses one or more frames. Each frame can
be independently compressed and decompressed. A frame contains one or more blocks that use
three types of block encoding. 1 raw, 2 RLE, and 3 compressed. Raw is uncompressed data, RLE
is a single byte of data and a byte for how long a run is, and compressed consists of two sections
literals and sequences. Literals are stored uncompressed with Huffman codes, RLE, ANS, or
others [51]. Sequences are copy commands, specifying offset and copy lengths. ZStd contains
many more minute details and recursive encodings, found in their RFC specification [51].
While not stated in the specification, the ZStd is heavily inspired by LZ77 fused with RLE,
ANS, and Huffman encoding.

Framework Users: Many systems do not implement their own compression encodings,
instead relying on other compressors. Spark [254] 3.x uses LZ4—another high-speed LZ77
variant—per default but has support for Snappy and ZStd. Flink [47, 16] defaults to Snappy
for internal compression. TensorFlow [158], interestingly default to ZLIB or GZIP for their
TFRecords. Scientific data formats like NetCDF and HDF5 [97] and storage managers like
SciDB [217] and TileDB [180] also use other libraries’ compression.

General Compression Random Access: A problem for LZ77, LZW, Snappy, GZIP,
and ZStd is that encoded data does not allow random access to the uncompressed data, and
therefore their techniques do not allow processing directly on their compressed formats. While
total random access is not strictly required because it is possible to scan some elements to
recover the given data, it does introduce overheads.
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Table 2.1: Linear Algebra Asymptotic Runtimes. A is input, R is the dense output,
c is a constant, v is a vector, M is a dense matrix, and @ is matrix multiply.

Algebra sum(A) max(A) A + x A · x
Type all col row all row col c v M c v M

Dense O (nm) O (nm) O (nm) O (nm)

COO O (A ̸=0) O (R + A ̸=0) O (A ̸=0) O (R + A ̸=0) O (nm) O (A ̸=0)

CSR O (A ̸=0) O (R + n + A ̸=0) O (A ̸=0) O (R + n + A ̸=0) O (nm) O (n + A ̸=0)

CSR-VI O (A ̸=0) O (R + n + A ̸=0) O(d) O (R + n + A ̸=0) O (nm) O(d) O (n + A ̸=0)

Algebra A@v v@A A@M M@A A⊤@A
BLAS GEMV GEVM GEMM SYRK

Dense O (nm) O (nmk) O
(︁

nm2
)︁

COO O (R + A ̸=0) O
(︁

R +
∑︁n

i=1
Ai, ̸=0k

)︁
O

(︁
R +

∑︁m

i=j
A ̸=0,jk

)︁
O

(︁
R +

∑︁n

i=1
(Ai, ̸=0)2

)︁
CSR(-VI) O (n + A ̸=0) O

(︁
R + n +

∑︁n

i=1
Ai, ̸=0k

)︁
O

(︁
R + n +

∑︁m

i=j
A ̸=0,jk

)︁
O

(︁
R + n +

∑︁n

i=1
(Ai, ̸=0)2

)︁
2.4 Compressed Linear Algebra
This section describes compressed linear algebra (CLA) frameworks that use compressed
formats and perform linear algebra directly on their compressed formats. The section assumes
operations are performed on floating point data, and we focus on the limited set of key
operations. We start with a baseline of dense operations.

Comparison: Table 2.1 shows the asymptotic runtime of common operations in Linear
Algebra. The dense operations’ asymptotic runtime is based on the dimensionality of the input.
It is hard to directly analyze performance via big-O notation, and therefore, we need to take
number of index lookups together with cache-locality into account for a thorough analysis. To
lighten the scope of the background, we put much of the detailed analysis in Appendix A.2.

Dense Linear Algebra: The dense baseline is most commonly used since it has stable
performance with different data characteristics. Basic Linear Algebra Subprograms (BLAS)
libraries are the de-facto standard for performing dense linear algebra [140, 29]. Example
libraries include cuBLAS [174] for NVIDIA GPUs, Intel MKL [117] (now under oneAPI [80])
and OpenBLAS [179] for CPU. While a high degree of freedom is given to people implementing
the BLAS algorithms, to allow for e.g. Strassens algorithm [220], most implementations have
the same underlying asymptotic runtime.

Sparse Linear Algebra: The beauty of sparse linear algebra is that most operations can
skip zero values in the matrices. Skipping non-zero values changes many operations’ asymptotic
behavior, making sparse operations preferable once the overhead of its added index structures
is less than the asymptotic gains. The break-even point highly depends on the sparse format
selected and the operations performed (See Appendix A.2 for details). A key takeaway is the
difference between COO and CSR is the guaranteed additional cost of n to scan all non-zero
values because CSR forces processing each row in many cases. However, once a non-trivial
number of non-zeros are contained in A̸=0, operations load fewer values per operation because
CSR implicitly materializes row indexes while iterating through the data structure.

CSR-VI: We included CSR-VI [130] in the table to highlight one of the key motivations
for CLA [74]. CSR-VI focused on A@v and v@A, showing that if the number of unique values
in a sparse representation is low, it can improve CSR performance via better cache locality
using the smaller CSR-VI layout. While CSR-VI does not change the asymptotic behavior of
the vector multiplication, the reduced amount of values loaded improves performance because
vector multiplication is memory bandwidth bound. CSR-VI could enhance the performance of
many other operations for the same reason. However, notably marked in red, CSR-VI reduces
A · c’s asymptotic behavior to scale in the number of unique values, d. Appendix A.3 contains
more in-depth details on why CSR-VI improve performance. The improvement motivates
exploration into compression-based enhancement of linear algebra.
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Figure 2.11: CLA Compression Sequence.

2.4.1 CLA in SystemML
CLA [74] is fully integrated into SystemML [86, 32, 33]. CLA’s main use case was to fit data
in the total aggregated memory of a Spark cluster to avoid spilling data partitions to disk.
CLA in SystemML combines various compression techniques to encode columns and column
groups into lightweight compressed formats designed for cache-conscious operations without
decompression. Importantly, CLA returns the same results as if the data was uncompressed,
making it possible for the optimizing compiler to inject compression into a compiled program
without user input. Another goal of CLA was to have close to (or better) uncompressed
in-memory performance. Therefore, CLA was only enabled per default if the matrices for a
workload exceeded aggregate cluster memory.

Compressed Format: CLA use four different compression schemes: DDC, RLE, OLE,
and UC (uncompressed). The compression schemes are used on subsets of columns, called
column groups (not to be confused with column group statistics [99]), and each group contains
the encoding and an array of column indexes for that group. The memory usage of each
group is equal to the previous section, with the addition of maintaining a column mapping.
The many schemes allow CLA to adapt to the characteristics of underlying data. The CLA
paper’s solution struggles in two scenarios. First, ultra-sparse matrices where the compressed
formats do not beat sparse formats. Second, large numbers of columns. CLA’s compression is
comprised of a few stages shown in Figure 2.11.

Compression Planning: The first task is to decide on a compression plan. CLA first
collect statistics of individual columns. Second, which columns to combine into multi-column
encodings. The grouping of columns is called co-coding. Finally, CLA chose the compression
scheme for each group of columns. To keep the planning fast, CLA uses sampling-based
techniques to collect statistics to estimate compression sizes. Deciding on columns to encode
together can be expensive with exhaustive search O(mm) and brute force greedy O(m3).
Instead, CLA employs a greedy algorithm with memoization of column groupings O(m2),
which is still prohibitively expensive for large numbers of columns. On top of this, CLA groups
columns into different bins based on the cardinality of underlying groups and then runs the
greedy co-coding algorithm in parallel on each bin. The end result is the compression plan.

Compression: Each column group is compressed in parallel. Compressing a single group
first, collect statistics of the group’s columns from the input matrix. Then, an optimal encoding
is chosen based on the collected statistics. When the compression plan is based on a sample,
CLA can correct false positives from the planning phase and change the selected compression
scheme, split column groups, or return UC groups while compressing groups. To enable
cache-efficient scans of the input, CLA chose to transpose the input matrix before compression.

Distributed: CLA supports both local-in-memory compression of entire matrices
and distributed compression. The distributed Spark implementation in SystemML uses
resilient distributed datasets key-value pairs of row-column indices and matrix blocks. CLA
independently compress each block of data. The downside to CLA’s distributed design is
that redundancy cannot be exploited across blocks of data, and therefore, block sizes have
to increase to improve compression potential. The default block sizes in SystemML and
SystemDS are 1k blocks, while the CLA papers [74, 75] found 16k blocks to be a better size
for compressed distributed blocks.
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2.4 Compressed Linear Algebra

Table 2.2: Linear Algebra Asymptotic Runtimes of Aggregate and Binary Operations. G is a
column group, DC stand for decompression, and other variables can be looked up in Table 2.1

Algebra sum(G) max(G) G + x G · x
Type all col row all col row c v M c v M

DDC O (n + dm) O (nm) O (dm) O (nm) O (dm) DC O (dm) DC
OLE O (b + z + dm) O (zm) O (dm) O (nm) O (n + dm) DC O (dm) DC
RLE O (b + r + dm) O (zm) O (dm) O (nm) O (n + dm) DC O (dm) DC
UC O (nm) O (nm) O (nm) DC O (nm) DC

Algebra G@v v@G G@M M@G G⊤@G
DDC O (n + dm) DC rows and use v@G DC rows and use v@G

OLE / RLE O (b + z + dm) DC rows and use v@G DC rows and use v@G
UC O (nm) DC rows and use v@G DC rows and use v@G

Notation: Let G be a compressed a column group of n rows and m columns, and Gi is
the i’th group in a compressed matrix. If G has a dictionary component, it is noted as D,
while its index component is I. z again refer to the count of non-zero tuples in the group
(A:,∃x ̸=0), while d is the number of distinct tuples. For RLE r is still the number of runs in the
compressed format and, for OLE and RLE, b is the number of blocks compressed. To reduce
confusion, we evaluate the asymptotic cost from the perspective of individual column groups
without output allocation. However, the overall cost is the sum of all groups in a compression.

Decompression Default: For CLA the basic philosophy is that if an operation was
not supported in compressed space, CLA would fall back to decompressing the matrix, and
performing the equivalent operation on the uncompressed matrix.

Performance: The same operations as in Table 2.1 is shown in Table 2.2 for the different
encodings of CLA. We replaced all instances of decompressing operators with DC. CLA always
decompressed to a dense format. The overhead of decompression for all encodings scales at
maximum linearly with the number of cells the group encode. The decompression cost is,
therefore, O(nm) for DDC and UC, while O(b + mz) for OLE and RLE.

Summation: Starting with aggregate operations, we can observe that co-coded versions of
column groups are better than the uncompressed versions, while single column groups generally
have asymptotic runtime equal to uncompressed dense or sparse allocations. The downside is
that co-coding columns increase d multiplicatively with uncorrelated columns dij ≤ di · dj .

DDC improves the sum operations by iterating through its index structure, I, calculating,
F , the frequency counts of each tuple in the dictionary, D. Once F is computed, DDC
accumulates dictionary entries multiplied with their frequencies according to:

sum(G) =
d∑︂

i=1
Fi ·

m∑︂
j=1
Di,j

If d > 32 ·1024, then DDC in CLA falls back to an O(nm) solution that looks up dictionary
entries directly via I for each cell. The fallback happens because the overhead of allocating
the temporary F array can be expensive.

OLE skips through its encoding and only processes non-zero tuples z and, similarly to
DDC, leverage frequencies of distinct tuples but does not need to allocate F since it can
process each tuple in D independently.

RLE similarly benefits from F . However, RLE further improves, relative to OLE, processing
by counting run lengths in the underlying data r, but RLE especially has trouble processing
row sums. All column groups struggle with row sums and fall back to performance similar to
uncompressed, where DDC forces dense processing, and OLE and RLE can use sparse.
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Maximum: Computing the max or min values in CLA is very fast because the compression
maintains a dictionary of unique values. The encodings can — like CSV-VI — return the max
very quickly for the entire compressed matrix. There is an overhead compared to CSV-VI
when columns are co-coded because the dictionary can contain duplicate values. However,
CLA can also return the max value quickly for individual columns, unlike CSV-VI, but the
row aggregates scale in the input size because each decompressed cell is processed for row
aggregates in CLA. CLA max-like operations do not change across encoding types.

Densifying: When performing densifying operations such as addition, CLA struggles.
Vector or Matrix: Adding a column vector, row vector, or a matrix CLA decompress the

entire compressed input first and subsequently performs uncompressed dense linear algebra.
Constant: On the other side, CLA exploits constant additions. However, the different

encodings process such operations differently. Constant addition performs best with less co-
coding because the reduced co-coding introduces fewer duplicate values inside the dictionaries.
DDC performs very well when adding a constant, only operating on the internal dictionary.
RLE and OLE can also have the same runtime as DDC. However, only if they compressed
inputs with no zero tuples. If not, the expensive n term is added detect and allocate the zero
rows in their schemes. Specifically, the allocation is costly because it requires RLE or OLE
to analyze their current index structure and allocate new extended versions. The densifying
increases z to z = n, increasing the OLE and sometimes RLE runtime larger than DDC in
many operations. r similarly increases by the number of previous zero runs. However, it is
guaranteed r <= n.

Sparse-safe: Sparse-safe constant operations have excellent scaling properties that benefit
from the dictionaries like CSR-VI. Vector and Matrix: Unfortunately, the vector or matrix input
also use decompression when the operation is sparse-safe in CLA. Constant: Unlike densifying
operations, OLE and RLE do not need to change their index structures and, therefore, can
use an equal implementation to DDC.
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Figure 2.12: G@v DDC RMM Example.

Matrix @ Vector: G@v is called right matrix
multiplication (RMM). Figure 2.12 shows an
example of CLA’s RMM with the DDC encoding
from Figure 3.2 applied to columns 1 and 3. The
RMM is a three-stage process. First, RMM slices
out values from v corresponding to the column
indexes of the column group G. The temporary
array, v’, size is of the number of columns of the
column group, m. Second, using the dictionary
of the compressed format, the pre-aggregate, P
is calculated P = D@v’, O(dm). Notice the pre-
aggregate is computed via a standard matrix multiply that can use generic matrix multiplication
libraries. The P result is an array in the size of distinct values d. Third, the pre-aggregated
results in P are added into the output cells according to the index structure of the column
group, I. The running time of the last step depends on the encoding in CLA. The runtime
of the last stage is O(n) for DDC while skipping zero tuples O(z + b) for RLE and OLE.
For cache efficiency in the final stage, RLE and OLE use their blocking structures, while
DDC naturally adds sequentially. When the compressed matrix uses multiple encodings, each
encoding adds to the same result vector. The CLA operation is memory bandwidth bound,
just like an uncompressed matrix-vector multiplication. However, the CLA implementation
scales better with a high degree of co-coding of columns since co-coding reduces the number of
passes the operation does on the result vector.

Parallelization: For parallel execution, RMM in CLA creates a set of tasks that each
process the multiplication of a row block of the compressed input. Unfortunately, for CLA’s
implementation steps, one and two (slicing and pre-aggregation) are duplicated for each thread.
However, this overhead is a minor problem when n ≫ d.
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Figure 2.13: v@G DDC LMM Example.

Vector @ Matrix: v@G in CLA called
left matrix multiplication (LMM). LMM has two
phases in CLA, which can be interpreted as a
reversal of the opposite order of RMM. Figure 2.13
shows an example of LMM with a DDC column
group. First, LLM computes a pre-aggregate
P. The pre-aggregation is different compared
to RMM and follows the formula:

Pj =
∑︂

i∈{i|Ii=j}
vi

In essence, the pre-aggregate sum the values of v by looking up the output index for P
in I. Figure 2.13 shows, marked with red arrows, the calculation of P2 = 5 + 4 = 9. The
runtime of LMM pre-aggregation depends on the compression type. DDC scale according to
O(n), while RLE and OLE O(z + b). Second, LMM performs a matrix multiplication (called
postscaling in the paper) with the column group dictionary D and the pre-aggregate P. CLA
fused the multiplication with the assignment into the output cells of the result vector, avoiding
a third phase. The runtime of the matrix multiplication and assigning into the output is
O(dm). Similar to CLA’s RMM, LMM scales better with column groups containing many
columns while having a small number of distinct tuples.

Parallelization: CLA naïvely parallelize over column groups for LLM. This choice is fine in
cases with many column groups. However, it suffers when some groups are faster to process
than others or when the number of column groups is less than the number of available threads.

Matrix @ Matrix: M@G and G@M were not directly supported in CLA. Instead, the
operations slice out vectors from M and use RMM or LMM depending on the side of the
uncompressed input. This decision, unfortunately, kept the memory-bandwidth bound nature
of matrix-vector multiplications but makes sense to reduce code.

Special cases: There are two special compound matrix multiplication operations that
CLA specialized for. MMChain defined as p = A⊤@(w · (A@v)) and TSMM R = A⊤@A.
The MMChain is specialized because the intermediate result of A@v would allocate a big
vector intermediate in the size of n that after being multiplied with w (another vector in the
number of rows) anyway would collapse into a small output vector of size m when matrix
multiplied with A⊤. The second operator A⊤@A exploits the symmetry of the result matrix,
R = R⊤, and avoid calculating half of the result matrix. Both operations in CLA decompress
columns one at a time and then leverage G@v multiplications for each column group.

Tradeoff: A dilemma arises when choosing encodings and co-coding. For instance, the
sparse-safe operations of CLA scale best with small dictionaries, while the aggregate sum
and both matrix multiplication types scale better with more columns in each column group
(assuming a low number of distinct values). CLA does not address this tradeoff because it fully
optimize for compression size. CLA does mention global planning as future work [75]. The
idea of global planning is to inform the compression to select an optimized compression scheme
based on a collection of workload characteristics to be executed on the compressed matrix.
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Figure 2.14: TOC Compression Example (modified from [147] to fit compression terminology).

2.4.2 Tuple-oriented Compression
Another influential work on compressed operations is Tuple-oriented Compression (TOC) [147,
146]. Unlike CLA, TOC uses a row compression scheme. TOC is designed for mini-batch
stochastic gradient descent (MGD) and, therefore, aims to compress individual mini-batches
such that entire datasets can fit in memory instead of reading mini-batches from disk.

Compressed Format: TOC divides its compression into three parts. (1) sparse encoding,
(2) logical encoding and (3) physical encoding as shown in Figure 2.14. The first stage’s sparse
encoding uses CSR to construct tuples of offset value pairs. The second uses a LZW [239]
variant that encodes full tuples as LZW tokens from the CSR representation. The initial
dictionary highlighted in the first row of the prefix tree of the LZW is all possible unique offset
value pairs. In the paper, the authors call the LZW dictionary a prefix tree, which is common
terminology for the same thing, just allocated in a tree-like structure in memory. Let C be
the fully-constructed prefix tree. Stage three encodes the physical encoding into two parts.
First, the base dictionary, I, and second, the encoded CSR table, D. The base dictionary is
recursively compressed with a DDC encoding on the values as the final compression. The
encoded CSR table contains two arrays: an offset list for encoded row starts and an encoded
array. Finally, the physical encoding prepends a tuple for all integer-based arrays to indicate
the length and number of bytes used for each value.

Compressed Size: An estimate of a TOC compressed matrix size can be determined by
combining the asymptotic growth of its compression components. The LZW component of
TOC compresses each CSR row partially but with a shared growing prefix tree. Therefore,
TOC wants to find similar rows with the same values in equivalent column indexes. Assuming
the number of non-zeros is > 0 for each row, and each row contains equivalent values, then the
LZW component would scale according to Ω(n + c), where c highest number of non-zeros on a
row. However, the size would tend towards Ω(n) since new rows contain no new sequences. If
each row contains either different column indexes or values, the scaling would be O(n + A̸=0).
The combination of lower and upper bound scaling makes TOC appealing because it guarantees
equivalent asymptotic scaling to CSR techniques, making it easy to estimate compression
memory overheads. The extra recursive compression and packing in the physical design do
not change the asymptotic scaling of the compression technique. CLA assumes the number of
rows in the input data is large, while TOC targets mini-batches with few rows. Therefore,
it makes sense for the TOC compression algorithm to exploit redundancy inside rows rather
than CLA’s exploitation of columns.
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Table 2.3: Linear Algebra Asymptotic Runtimes of Aggregate and Binary Operations in TOC.
Missing operations compared to Table 2.1 and Table 2.2, are not supported.

Algebra A + x A · c A@x x@A
Type c M c v M v M

TOC O (nm) O (d) O
(︁

(|D| + |C′|)k
)︁

O
(︁

(|D| + |C′|)k
)︁

TOC supports four types of operations. These operations enable the execution of general
linear models and neural network workloads.

Sparse-safe Scalar: The A · c, together with Ac, are sparse-safe operations, which is the
fastest type of operation on TOC. The DDC encoding inside TOC isolates all unique possible
values of the input. Therefore, it is possible to simply modify the dictionary to get excellent
performance benefits from a global DDC encoding O(d). The benefit is equivalent to CSR-VI
and better than CLA, which only exploits the distinct tuples inside individual column groups.

Unsafe Scalar: TOC rely on the sparsity exploiting CSR format. Therefore, they suffer
from sparse-unsafe operations, like the OLE and RLE encoding in CLA. The densification
leads to decompressing the entire encoding, O(nm) because the compression structure would
change based on the newly introduced values in the CSR base of TOC. To explain the details,
we first describe how decompression works in TOC.
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Figure 2.15: TOC Create C’

Decompression: The process of de-
compressing a TOC encoded mini-batch is:
First, build an index for the tree (C) called
C′, as shown in Figure 2.15, to be able
to efficient lookup the sequence of tuples
for each code O(|C′|). Note the index in
Figure 2.15 is not allocated, while the col,
value, and parents are. C′ is constructed
via the decompression algorithm of LZW
by unpacking the default dictionary to
the first indices and scanning D. Using
C′, the TOC-encoded CSR (D) can be
transformed to a CSR representation with
O(A̸=0) time, followed by a decoding of
the CSR to a dense matrix O(nm).

RMM: Right matrix multiplication, A@M, in TOC scale in the number of encoded tokens.
TOC simplifies the matrix-matrix operation to a matrix-vector operation, A@v, to process
each column of the right-side matrix. In each A@v allocate a vector h of length |C′|+ 1 and
calculate for each entry in C′ its multiplication value:

hi = C′
i.val · vC′

i.col + hC′
i.parent

h0 is always zero, while h1 is the first rule. The nice characteristic of h is that the parent is
already calculated when iterating from the beginning of C′. After computing h, TOC iterates
through D to add into individual output cells by looking up indexes in h.

LMM: Left matrix multiplication, M@A, is done in the opposite order of RMM. In LMM
another, h is used. However, this one is in the size of |D|. For each row v in M, we go
through D and add vi to hDij . Similar to CLA’s LMM pre-aggregation, TOC sums the
values of the left side row-vector into h based on the indexes in D. Following the summation,
TOC loop backwards (i = |D|, ..., i = 1) though h and assign the output row R’s values to
RC′

i.col += hi · C′
i.val and increase the parent by hC′

i.parent += hi. The RMM and LMM
asymptotic runtime scale according to O(|D|+ |C′|), making it very fast, when the number of
unique row-offset + value pairs is low.
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Figure 2.16: Grammar-based Compression Example (modified from [77]).

Table 2.4: Linear Algebra Asymptotic Runtimes of Aggregate and Binary Operations in
GLA [77]. Missing operations compared to previous tables, are not supported.

Algebra A + x A · c A@x x@A

GLA DC O (d) O ((|R| + |C|)k) O ((|R| + |C|)k)

2.4.3 Grammar-compressed Linear Algebra
Another related work is ’Improving Matrix-vector Multiplication via Lossless Grammar-
Compressed matrices’ [77]. This work introduces two compression techniques. The first,
called CSRV, is equivalent to CSR-IV [130]. However, the second technique is new, using a
grammar-compressed representation for linear algebra, henceforth abbreviated to GLA.

Compressed Format: Starting from the CSR-IV representation, the algorithm finds a
grammar that can encode a CSR-IV matrix. Figure 2.16 shows a GLA compressed format. The
compressed format consists of three parts. First, a set of base rules, also called the grammar,
R. Second, a sequence of rules, C, the length of rows that decompose into individual rows.
Third, the dictionary of unique values V of size d.

Rules: A base rule is always a non-terminal pointing to two components. A component
can either be a base-tuple or another rule. A non-terminal rule Ni− > Ri1Ri2 decomposes
into a tuple of two other components. A base-tuple is equivalent to a tuple in CSR-IV, T<h,k>,
where h refers to a value index in V and k a row-offset. Furthermore, the rules must be sorted
with no rule points forward in the list of rules, such that Ni can point to Nj and Nk only if
j, k < i. The sorting is essential for the specialized RMM and LMM in GLA.

Grammar-finding: GLA does not address the grammar-finding problem and instead uses an
existing algorithm called RePair [138]. Finding a good grammar is an NP-complete problem [77,
49]. Grammar finding is also called a straight-line program (SLP) [155, 77]. Finding the
smallest SLP is grammar-based compression [49, 159].

Runtime: Similar to TOC and CSV-VI, GLA relies on sparse linear algebra as a foundation.
The worst-case performance of most operations depends on the number of base tuples in
CSR-IV. However, if there are some repeated value row-offset pairs, GLA improves performance.
The best-case performance is log2 of the number of tuples in rows because the branching factor
of each rule in GLA is two.

Operations: GLA allows efficient sparse-safe scalar operations while decompressing its
data in sparse unsafe operations, just like TOC and CSV-VI. An interesting case for GLA is
matrix multiplication.

RMM: GLA use a process very similar to TOC. GLA simplify the RMM to process a
column vector at a time. GLA allocate a temporary array, w, in the size of rules. For each i
in 0 to |R| calculate Ni and add to wi based on the two components of Ni. If a component is
a base-tuple, calculate its output, wi += V[Tkey] · V[Tcol]. If the rule is a non-terminal, Nk,
look up the already computed value of the rule (k < i) and add it wi += wk. Afterwards, to
assign the output values, iterate through C to compute the output vector by lookups into w.
Overall each right-side column can be processed in O(|R|+ |C|). Iterating through the rules
works for the same reason as TOC.
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LMM: LLM has a similar runtime to RMM and can employ the same trick as TOC
processing, a single left-side row vector, y, at a time. First, allocate a w vector in the size of
rules and an output vector R in a number of columns of the GLA compressed matrix. Then,
iterate through the C and add the yi values to the Ci’s N rule index in w. Similar to TOC,
iterate backwards though indices of R. For each component q. If q is a non-terminal, Nj add
wi value to wj (guaranteed j < i). Otherwise if q is a terminal T<h,k> increase Rk by Vh · wi.

Comparison to TOC: There are many similarities between GLA and TOC processing
of matrix multiplications. Both employ ideas to push the computations through linked rules.
GLA can possibly find a small set of rules that gives better performance than TOC. However,
GLA has to perform an analysis and generate a grammar of rules, which can be costly and
GLA’s branching factor is two. In comparison, TOC’s branching factor is unlimited and is able
to dynamically rediscover its compression rules by leveraging the LZW compression technique.
Both TOC and GLA optimize for the compression of rows.

2.4.4 Huffman Address Map
Huffman Address Map (HAM) and its sparsity exploiting version sparse HAM (sHAM) [157]
also target efficient matrix-vector multiplication, specifically in the domain of deep neural
networks. Unlike traditional sparsity exploiting techniques, sHAM considers sparsity a subclass
of low-entropic data. The technique compresses the DNN weight matrices and relies on the
matrices preprocessed with weight pruning and quantization [103]. As implied by the name,
Ham is based on Huffman coding [111, 163].

LMM: The left matrix multiplication in HAM processes each row on the left independently
via matrix-vector operations. For each column in the HAM compressed matrix, read through
the HAM compressed bits, get the next entry’s row index, look up its dictionary value, and
multiply with the corresponding column value on the left. The runtime of HAM’s vector
LMM is O(nm), and sHAM is O(A̸=0). Each operation has a slight overhead compared
to CSR, where the index lookup is replaced by a decoding of the Huffman codes, making
the technique generally slower than a CSR equivalent implementation. However, HAM does
improve memory usage and reduces power consumption in many use cases. Because the
matrix-vector multiplication is memory bandwidth bound, it is possible to make a HAM
implementation faster than uncompressed.

RMM: The HAM paper does not implement RMM but says it is similar to LMM.

2.4.5 Compressed Shared Elements Row
Another related technique for compressed operations is Compressed Shared Elements Row
(CSER) [241]. The paper introduces two compression versions. First, the Compressed Entropy
Row (CER) contains four arrays: First, a unique values array like in DDC, but sorted based
on frequency. Second, a column indices array of column offsets like CSR. However, excluding
the most frequent element and containing sequences for each unique value like in OLE. Third,
a pointer array for the next element. Fourth and final, similar to CSR, an offsets list for the
next new row starts. The second compression technique, Compressed Shared Elements Row
(CSER), additionally stores a mapping (like DDC) to allow the unique values in arbitrary
orders shared between compressions.

Performance: CSER’s operational time complexity is equal to OLE, enabling the
implementation to scale in the number of non-zeros because the compressed format is close to
equivalent to OLE. However, unlike OLE in CLA [74], CSER does not have any cache-conscious
blocking scheme.
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2.5 Workload Adaptation
Most compression schemes optimize for size and/or (de)compression speed [90, 76, 51, 262, 239,
244, 55, 126], and adaptively chose various compression strategies based on the characteristics
of the input data. Selecting encoding schemes depends on data, workload and underlying
hardware [48]. The optimization goal makes sense for classical compression techniques, however
when we can run operations directly on the compressed data we can optimize the data layout
to efficiently process a workload.

2.5.1 Cost Modelling
Many in-memory database systems already use lightweight compression algorithms optimized
for fast compression and decompression to support operations performance [4, 56, 126]. Damme
et al. [59] conducted an extensive survey on cost-based selection strategies for integer-based
compression techniques to evaluate different compression techniques performance for database
systems. The survey highlights two measures to include in a cost-based selection: performance
(decomposed into compression, decompression and processing speed) and compression rate
(the relative size of the compressed data). The study concludes that there is “no single-best
lightweight integer compression algorithm”, therefore, it further motivates for cost-based
optimization and selection of compression techniques. Damme et al. [59] suggest selecting
a compression algorithm A, objective O, and dataset D. A can be selected from a set of
compression algorithms A. O is decomposed into tcomp compression time, tdecomp decompression
time, tagg aggregate or operation time and ratecomp compression ratio. Selecting the optimal
compression technique, Aopt, then becomes a minimization problem of the cost of combinations
of A, O, and D [59]:

Aopt (A,O,D) = argmin
A∈A

truecost(A,O,D)

The intention of the truecost function is to return the actual cost of an combination of
A, O, and D. To find the optimal A, we would have to run the workload using all A on D.
However, it is prohibitively expensive [134, 59] to evaluate all combinations of compression
algorithms. Therefore, most approaches instead approximate the performance of A based on
O and D before selecting a specific technique. Damme et al. highlights two approaches to
reduce the analysis cost: (1) rule-based, and (2) cost-based.

Rule-based: Rule-based selection strategies can be modeled as a decision tree [59], an
example of rule-based selection is the static heuristics in Parquet [52, 134]. The rules can
be based on properties of A, O and D, where each node in the tree refines the selection of
compression techniques. The downside of rule-based approaches, is that it does not necessarily
select the optimal A because some early rules might “rule out” better approaches too early.

Cost-based: Cost-based techniques try to estimate the cost of all A independently, via
comparable metrics of the cost of each technique. The typical comparison point is size, ratecomp,
however some systems chose to choose A based on any of the other properties [134, 90, 76] or
compound weighted properties. If the cost-based approaches have perfect information of the
entire input D, it should be possible to select the optimal A. However, similarly to applying
all A to D collecting perfect information is also prohibitively expensive.

Our Approach: This thesis’s workload-aware compression planning uses a bit of rule-
based selection to introduce compression instructions into user defined scripts and cost-based
compression based on summaries of linear algebra programs in order to tune online lossless
matrix compression and compressed operations.
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2.5.2 Property Estimation
For both rule- and cost-based approaches we want to estimate the performance of A before
applying it to data. A common approach is to extrapolate the performance of A based on
properties from the data [59, 134, 74]. Min, max, and unique value frequencies are enough for
simple compression techniques such as FOR, DDC and constant compressions [134]. However,
other techniques, such as RLE, require different information, such as the number of runs
of similar values. Therefore, the set of properties needed is dependent on the compression
techniques selected.

Maintained Statistics: Some systems, data structures, and files maintain properties of
the entire datasets such as non-zero values or min-max ranges, making cost-based A selection
simple if A does not require further information. While SystemDS does maintain the number
of non-zero values, it unfortunately does not help the CLA implementation much because CLA
needs more fine-grained information such as non-zeros per column that could be available if
the system would use compressed sparse columns (CSC).

Cardinality Estimation: One of the most important components to estimate is the
number of distinct values d. Cardinality estimation is notoriously challenging since exact
counts using a can set cost memory equal to the input size if all values are unique. Approximate
methods, such as HyperLogLog, calculate an approximate distinct value count with fixed
memory budgets [104]. However, full dataset iterations can be prohibitively expensive for
repeated analysis of multiple encoding plans [74].

Sample Estimation: To efficiently approximate the data’s properties an approach is to
extract a sample of the data. A set of informative properties that can be collected from a
sample, and extrapolated to statistics for the entire dataset [100]. However, sample estimation
approaches are not guaranteed to find the correct statistics. It can easily be proven that
the estimations can be arbitrarily bad if the remaining data not sampled is completely
different [100].

Sample-based Cardinality Estimation: When counting the number of distinct values in a
sample we reduce the upper bound of memory, but introduce uncertainty. The distinct count
has an obvious lower bound based on the distinct values in the sample and the natural upper
bound of the total number of values in the input. CLA use Haas et al. [100] an extension to a
generalized jackknife approach [96] that estimates d in a finite-sized collection.

Sample Selection: The sample can be selected in many ways, with different tradeoffs. If
the sample takes the first k rows of the dataset, it is very efficient because it does not have to
scan or jump through the dataset. However, taking the first elements can be very biased [134].
An unbiased sample is a sample without replacement, that with uniform randomness chooses
elements without duplicate indexes. However, while random samples work for estimating many
properties, it does not preserve the locality of the data [134]. Other sample-based approaches
can improve the selection to improve run counting for RLE, such as extracting small continuous
runs as samples [134].

Learned Selection: It is also possible to skip handcrafted properties for selecting
compression schemes and instead rely on a learned feature vector, an example is Learned
Encoding Advisor (LEA) [48]. Based on a sample of data, and simple statistics LEA can select
the encoding type optimizing for size or query performance. LEA is trained to predict the
encoded cost including encoded size, memory speed and storage speed for processing different
A, given a sample and a few collected statistics.

Constrained Selection: Another important aspect in selecting compression schemes is
to adhere to constraints while optimizing for other goals. A good example is selecting A to
make the data fit in memory, but once it fits optimize for performance. This is for instance
addressed in "Workload-Driven and Robust Selection of Compression Schemes for Column
Stores" [38], that additionally considers the robustness to workload-shifts of the compression
configuration in the context of the Hyrise system [70].
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Figure 2.17: Storage vs Query Tradeoff [230]

Our Approach: This thesis’s workload-aware compression uses samples to collect statistics
to estimate the performance of linear algebra operations and in turn the compressed format
for entire linear algebra workloads.

2.5.3 Multi Objective Optimization
Figure 2.17 (Vertica [230]) highlight the tradeoff space of their DBDesigner, a customizable
physical design tool for the Vertica analytic database. While the focus in that paper is on
running a database while optimizing either towards query performance or storage space, it
also is valid for compressed linear algebra operations.

Storage Optimization: When the workload adaptation should optimize for storage
space—via, for instance, more heavyweight compression techniques—it would cost more to
decompress the data, and therefore queries would be slower. In the most extreme case, there
would be no query workload to be performed on the data, e.g. logging data that never is used
or even loaded again.

Query Optimization: When moving from only stored data, the second level is to load
the data, while performing little to no queries. Here it still makes sense to save data heavily
compressed because of its rare usage. Moving over to the other side, if the data is frequently
modified with incremental updates it is hard to keep a unified compression scheme and the
data therefore would not benefit from compression. In such cases other data formats that
optimize for the workload of frequent queries is better [137].

Storage Pruning: All queries do not need to process all data in DBMS systems, therefore
DBMS systems can strategically load only effected blocks of data from storage. A recent
example of this is in learned partitioning schemes that aim to maximize partitioning pruning
[253]. However, unlike DBMS systems this thesis loads entire datasets, because we rely on full
operations on all data.

Our approach: This thesis’s workload-aware compression optimizes towards both
directions. When we save compressed data to disk, we optimize for storage space and
I/O time, leveraging lightweight compression techniques. We optimize for storage and I/O
because when data is written, it is unknown what future program workloads look like. Once
we read data, we modify the data into a compute-oriented compressed format that adapts
based on a user-defined linear algebra program.

2.6 Feature Engineering
Data-centric ML pipelines extend ML pipelines with additional preprocessing steps. These
extending techniques can substantially improve model accuracy [131, 212, 248, 67], generaliz-
ability [7], and other measures like fairness [203, 219]. In this section, we highlight techniques
and influential works.

Definitions: We differentiate between arithmetic transformations, which we can efficiently
map to linear algebra operations on entire input matrices and feature engineering, which we
cannot. However, common for most transformations, there is a “build” process that collects
information about input data to then “apply” the transformations equivalently on unseen data.
In SystemDS, we call these transformencode to build and apply the transformations, and
transformapply to only apply the transformations.
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Scope of Interest: To not cover the whole field of feature engineering, we focus on the
transformations from a point of sparsifying data or introducing redundancy we can exploit
in compression. As shown in the motivation (Section 1.2) and in the related compression
techniques (Section 2.1), these properties can improve computational efficiency. However, some
preprocessing operations densify the input, making sparsity exploitation impractical.

Automation: There is a high degree of complexity in choosing the right transformations
and augmentations to perform on data to improve model accuracy. Therefore, many systems
propose automated iterating and selecting the preprocessing pipelines [203, 256, 8, 212].
AutoML tools such as Auto-WEKA [225, 129] and Auto SKlearn [79, 78] include easy-to-use
abstractions for end users.

2.6.1 Categorical Transformations
Dictionary: Some feature transformations build dictionaries that map unique input values to
new values, called dictionary encoding. This transformation is typically done on categorical
values to transform them into numeric values. However, it can also be applied to numerical
inputs. An example is recoding values, where each unique value in an input is recoded to
contiguous integers. Categorical data can be further subdivided into nominal data, and ordinal
data. Nominal data is unordered, while ordinal data can be ordered. Nominal data transformed
via dictionary encoding is typically combined with a one-hot encoding transformation, while
nominal data can return its numeric ordered values. Dictionary encoding does not introduce
zero values and, therefore, does not increase the sparsity. Similarly, dictionary encoding does
not reduce the number of distinct values since each unique input value is mapped to a single
new value. However, when combined with one-hot encoding, the sparsity does increase linearly
with the number of unique values 1/d, as shown in the motivation Section 1.2.3.

Hashing: Instead of building a dictionary of all unique values, a hash based encoder can be
used. As mention in Section 1.2.3, feature hashing maps values to ∆ buckets, making the upper
bound of unique values after encoding controllable. There are efficiency benefits to feature
hashing compared to dictionary-based approaches. The most notable is no dictionary allocation.
Furthermore, hash encoding can compute each value independently, meaning the build phase of
transform encode is free. A downside is that hashing is a lossy transformation. Hash collisions
are likely with small ∆ compared to distinct inputs due to the birthday problem (assuming a
uniformly distributing hash function). From the point of view of sparsity exploitation hash
encoding have the same properties as dictionary encoding. However, with one difference being
the sparsity, and in turn, the number of output columns, is controllable, 1/∆, when combined
with one-hot encoding.

2.6.2 Arithmetic Transformations
Many transformations modify the numeric values of data in data-centric pipelines. Examples
of such transformation are min-max normalization, standard scoring (also called z-score), and
winsorization (or clipping). Clustering algorithms can also be used to find other features, such
as K-means or PCA. Transformations of images and sound, such as affine transformations
or Fourier transformations, are also part of arithmetic feature transformations. All these
operations can be performed via standard linear algebra operations, such as binary scalar
operations, matrix multiplies and min-max-sum aggregates.

Normalization: Before fitting a model to data, most pipelines include a normalization step.
The normalization is typically done globally or on individual features. The global normalization
aggregates all values, while individual features typically apply column aggregates. However,
many of these invalidate sparse linear algebra because they densify the input data. Min-max
normalization scales all values to fall in the range of 0 and 1. If the minimum value is zero, then
the sparsity is maintained, or if the minimum value is overrepresented in the data, then the
returned data can be sparsified. The standard score, is calculated via X̂ = (X − µ)/σ, where
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µ is the mean and σ is the standard deviation equal to σ =
√︁

(X − µ)2/|X|. SystemDS’s scale
function performs z-score with Bessel’s correction on individual features, making the operation
σi =

√︂
(X:,i − µi)2/(|X:,i| − 1). Similar to min-max normalization, z-score normalization

densifies and only maintains its sparsity if the mean of input features is zero.
Clipping: Clipping or winsorizing input features tries to remove outliers data. Clipping

replace all values above or below a specific value X̂ = min(X, c) or X̂ = max(X, c) with the
boundary value. While winsorizing sets the clipping bounds based on quantile ranges, typically
the 5% and 95% quantiles. Both types of clipping maintain or improve sparsity while also
maintaining and improving the number of distinct values, making clipping work nicely with
sparsity exploiting techniques as well as CLA.

Binning: Section 1.2.2 introduced and motivated for learned [258, 257] and static
quantization schemes/binning techniques. Binning maintains or improves sparsity and fully
controls the number of distinct values.

Clustering: Using clustering algorithms allows us to control the overall dimensionality
of the input. PCA does clustering by selecting only the top-k most influential principal
components. However, PCA, unfortunately, tends to densify and increase the number of unique
values. Therefore, PCA does not work well as a preprocessing step with compression. We
introduce ways to make PCA return compressed formats. K-means can control its output
dimensions by setting the number of centroids used. We can use either the closest centroid as
a categorical feature or the distances to all centroids as a feature for other ML models. In the
first case, it is fully controllable how many distinct values we get, while the second tends to
return dense outputs not amenable to compression.

Image Affine Transformations: Affine transformations of images modify the location of
the pixel values via a transformation matrix. When a matrix multiplying the transformation
matrix with an input coordinate, an output coordinate can be determined. With this in
mind, it is possible to define a sparse ’selection’ matrix filled with coordinate mappings that,
when multiplied with the input image, apply the affine transformation. Depending on the
interpolation type applied, affine transformations can maintain sparsity and the number of
distinct values. However, commonly more complex interpolation functions improve the output
quality from affine transformations but do not maintain the distinct values.

2.6.3 Feature Augmentations
While transforming existing features is useful, ML models can leverage multiple features with
different preprocessing steps by collecting these features together into a larger dimensional
input space. Additionally, modifying the input features allows simple models, such as linear
models, to find solutions because of additional non-linear appended or modified features.

Non-Linear Example: Given a list of vectors X ∈ Rnxm and y ∈ {c1, c2}, we can train a
linear model to distinguish two classes in X via D(xi) = Wxi + w0. If D(xi) > 0 then xi ∈ c1
otherwise xi ∈ c2 [42]. Many solutions exist, and therefore algorithms, for finding weights
W and intercept values w0 that try to split the classes. Unfortunately, linear models are not
always a good fit because no hyperplane can split the two classes accurately. We can apply
non-linearities to the input data before fitting the mapping to improve the model. For instance,
it might be that D(xi) = Wlog2(xi) + w0 is a better fit.

Kernels: Kernel machines, where SVM is the most known member [42], formalize the
technique of extending linear classifiers and solve non-linear problems via kernel functions [15].
A kernel function measures the similarity between two points xi and xj defined as K(xi, xj) =
φ(xi)⊤φ(xj). φ : Rm → Rq is a function that maps the input space of dimension m to the
feature space of dimension q. A simple example is φa(xi) = φa([xi1, xi2]) = [xi1, xi2, xi

2
1 + xi

2
2]

where xi ∈ R2 expands to φa(xi) ∈ R3. The kernel function for φa in such a case simplifies to
Ka(xi, xj) = xi · xj + ||xi||2||xj ||2 (proof in Appendix A.4).
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Primal and Dual: When a kernel function is available, it is possible to find the weights
for W and w0 with a primal and dual solution [42]. We want to find the weights:

D(xi) = Wφ(xi) + w0

A primal space solution requires materializing the result of applying φ to all inputs in X
and then using some algorithm to solve for W and w0. However, the dimensionality of φ(x)
can be very large because the feature space of X grows based on the applied non-linearities.
Alternatively, we can solve the equations indirectly in dual space by finding another weight
matrix Z via applying the kernel function K on pairs of input tuples. Solving in dual space
can scale much better than using φ.

D(x) =
n∑︂

k=1
ZkK(xk, x) + w0

Under some conditions [42], it is possible to rediscover W from Z via the dual representation:

Wi =
n∑︂

k=1
Zkφ(Xk)

Polynomial Expansion: A common non-linearity is a polynomial expansion K(x, x′) =
(x · x′ + c)p of order p. If the order is 2 the φ mapping expands to:

φp(x) = (x2
n, . . . , x2

1,
√

2xnxn−1, . . . ,
√

2xnx1,
√

2xn−1xn−2, . . . ,
√

2xn−1x1, . . . ,
√

2x2x1,
√

2cxn, . . . ,
√

2cx1, c)

As can be seen in the equation, the number of additional features in φ(x) grows quickly.
There are ((n(n + 1))/2) + n parameters, and when increasing p the scaling of φp(x) is O(np).
However, it is possible to skip allocating and computing this larger space by using the dual
space and the simplified formula from the kernel function. Using the dual space while avoiding
allocation of the kernel space is known as the kernel trick while solving the linear models in
the transformed space is known as quadratic programming [246].

Big Feature Space: The feature space of φ can, in theory, be infinite with the right
kernel function. Additionally, kernel machines and a polynomial fitted to the same degree as
instances in X are guaranteed to be able to perfectly map to Y [15]. These two properties
together make computing using the dual space tempting, even with the squared allocation of
the kernel function.
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2.7 Summary
This chapter introduced the conceptual foundations and related work for the contributions
proposed in the subsequent chapters. We covered individual lightweight and heavyweight
compression techniques, system integration and hybrid approaches. We show how related work
pushes operations into custom monolithic compression schemes, column-based compression
techniques, and fine-grained sparsity exploiting structures. We identified a common weakness
of related compressed linear algebra work relying on sparse linear algebra. Related work,
therefore, suffers from dense inputs or densifying operations on their sparse compression
techniques. We highlight workload analysis techniques and adaptations to optimize compressed
formats while identifying a new optimization potential for compressed operations. We covered
different feature transformations and engineering while focusing on their effects on sparsity and
distinct values. These transformation’s effects are ideal matches for compressed operations.
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Workload-aware

Compressed Linear Algebra
Parts of this chapter are published in AWARE [23] and under submission in BWARE.

This chapter introduces our contributions to performing linear algebra operations on
compressed data. Previous work on compressed linear algebra (CLA) [74, 75] allowed for general
redundancy-exploitation (with repeated values and correlation) by applying lightweight lossless
compression techniques like dictionary, run-length, and offset-list encoding and executing linear
algebra operations like matrix-vector multiplications and element-wise operations directly on
compressed representations. CLA was integrated into Apache SystemML [33], but by default,
only applied for multi-column matrices, whose size exceeded aggregated cluster memory, and
only a small set of operations (which were commonly executed on the large compressed feature
matrix) were supported in compressed space. The constraint of exceeding aggregate cluster
memory ensures that online compression time and space overheads are amortized but limit
applicability in practice.

AWARE Goals and Contributions: We aim to improve the applicability of lossless
matrix compression in complex ML pipelines. The key objective is to reduce the execution time
of a given workload instead of improving compression ratios. This metric covers decreasing
compression time to amortize online compression, improving size if data access is the bottleneck,
and fast operations via specialized compression decisions, kernels, and execution plans. To
this end, we introduce a workload-aware matrix compression framework (for full matrices or
tiles of a distributed matrix) and make the following detailed technical contributions:

• Compression Framework: New encodings and compressed operations (Section 3.1 and
Section 3.2), designed for compressed intermediates and thus, chains of operations.

• Workload-aware Compression: Novel workload-aware compression planning and compila-
tion techniques (Section 3.3).

• Experiments: Local and distributed experiments comparing uncompressed linear algebra
(ULA), CLA [74, 75], TensorFlow, and AWARE on various workloads (Section 3.4).

Our workload-aware compression addresses the limitations from CLA with new techniques
for compression planning, compressed intermediates, and different optimization objectives and
all contributions are fully integrated into Apache SystemDS [31] and deemed reproducible1.
Table 3.1 highlights some of the key differences between CLA and AWARE.

1https://github.com/damslab/reproducibility/tree/master/sigmod2023-AWARE-p5
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Table 3.1: Key Differences of CLA and AWARE
CLA [74, 75] AWARE

Co-Coding O(m2) O(m)
Column Group Encodings 4 (5) 7 (327)

Materialization Eager Deferred
Optimization Objective Data Data & Ops

Matrix Multiplication MV, VM MV, VM, MM

• First, to reduce compression time, we introduce a new co-coding technique that performs
group combinations instead of group extractions, reducing the overhead of analyzing
groups. Our co-coding approach includes a new enumeration heuristic that only evaluates
O(m) group combinations.

• Second, for extended utilization of compressed intermediates, we provide new column
group encodings that facilitate shallow-copy operations. Table 3.1 shows the number of
high-level column group types and—in parenthesis—the total number of variants of these
encodings. We also introduce a deferred operation/encoding design, where compressed
operations can output different types of encodings, allowing compressed intermediates
where CLA would decompress or return inefficient representations. Furthermore, AWARE
natively supports compressed matrix-matrix multiplication (even with two compressed
inputs), unlike CLA, which would process it via repeated matrix-vector multiplications
and thus decompresses one side.

• Finally, above all, AWARE uses a cost-based optimization objective of minimizing
the workload execution time and tuning the compression process, the compressed
representation, and compressed operations in a principled way.

Notation: For this chapter, we need some additional specific notation. An n × m
uncompressed input matrix is compressed into a set of column groups G, where |G| denotes
the number of column groups (with |G| ≤ m without overlapping groups), and Gi denotes the
i-th column group. A single column group Gi comprises Gic columns, a di × Gic dictionary Di

with di distinct tuples, and an index structure Ii.
∑︁|G|

i=1 Gic ≥ m must be true for the validity
of operations in AWARE. Furthermore, Fi is the frequency of each tuple in Di based on Ii.
For matrix multiplications AG or GB, let k denote the number of rows in A and columns in
B, respectively. Given a matrix or vector X, X̸=0 is the set of non-zero values in the matrix,
while (Gi) ̸=0 is the non-zeros in an uncompressed version of the column group. Some encodings
use default tuples, for which we repurpose µ. We write Giµ as the set of rows containing the
default µ in an uncompressed version of the i’th group, and the compliment Gc

iµ is the set of
rows not containing the default tuple µ. If the encoding does not use default tuples then the
compliment |Gc

iµ| = n is equal to the number of rows (which is true for DDC) and |Giµ| = 0.

Table 3.2: Overview of CLA and AWARE Column Groups.
Type Description CLA [74, 75] AWARE
CON Constant or Empty Columns ✓
DDC Dense Dictionary Coding ✓ ✓
OLE Offset-list Encoding ✓ (✓)
FOR Frame of Reference ✓
RLE Run-length Encoding ✓ (✓)
SDC Sparse Dictionary Coding ✓
UC Uncompressed (dense/sparse) ✓ ✓
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Figure 3.1: Example of AWARE Matrix Compression.

3.1 Compression
This section describes AWARE’s compressed representation, selected new concepts, and the
overall compression algorithm. The new encoding schemes are designed for redundancy-
exploitation across operations, while the new compression algorithm ensures fast, easy to
amortize compression. AWARE encodes each column group independently in a specific
encoding type. Table 3.2 shows these column-group encodings, as well as the differences
to CLA. Figure 3.1 then presents an example of compressing a 10 × 6 matrix into three
single-column groups (0, 2 and 5), one two-column group ({1, 3}), and an empty group. The
concept of column groups is exactly the same as in CLA.

3.1.1 Dictionary-based Compression
Most of the encodings are already introduced in Section 2.1, and this chapter only introduces
the new encoding types and highlights the differences in encoding specific for AWARE. Notably,
AWARE encode column groups of a matrix in different encodings, such that we can specialize
the compression depending on column properties.

Dense Dictionary Coding (DDC): A DDC column encoding contains two parts: a
dictionary with the distinct value tuples in the column group, (shown in Figure 3.1 as a Dict
with 2 values for column {0}), and an index structure with a row-to-tuple mapping (e.g.,
dictionary position). DDC is dense because each row input is assigned a code in the map.

Sparse Dictionary Coding (SDC): SDC is a new encoding, it is a combination of DDC
and sparse matrix formats like compressed sparse rows (CSR). An example is shown in yellow
for columns {1, 3} in Figure 3.1. Like DDC, each group has a dictionary of all unique tuples
except the most frequent tuple named “Def” for default. This scheme encodes row locations
of non-default tuples in the index structure as row-index pairs. This approach is similar to
compressed sparse columns (CSC) that store row-index/value pairs for non-zero values, but
extends it for general redundancy-exploitation (default values, dictionary references). In many
ways it is also similar to many of the other sparsity-exploiting compression schemes such as
CSR-IV, however, with major performance differences. The first difference is that the row
part is further specialized to delta offsets (“Off”) from previous rows to allow smaller physical
codewords. The second difference is the maintaining of a default value. Similar to CSR-IV, a
“Map” maps offsets to tuples in the dictionary. If we define zi as the number of tuples in Gi

with at least one non-zero value zi = ((Gi):,∃x ̸=0) (similar to OLE in Section 2.1). Then, SDC
scales according to O(dGic + z), which is equivalent to OLE without the blocking scheme.

SDC Specializations: SDC specializes into SDCZ, Z for Zero, where the default tuples
only contain zero values, meaning sparse linear algebra rules apply. SDCZ is shown in the {2}
blue column group. Another specialization is SDCS, S for Single, binary data (one dictionary
entry, one default), In the SDCS case, there is no need for mapping codes because all offsets
map to the non-default value. An example of SDCS is the {5} orange column group.
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Figure 3.2: DDCFOR scheme

Frame of Reference (FOR): We use FOR as a
second layer on top of DDC or SDC (called DDCFOR,
SDCFOR). This encoding shallow-copies the index
structures and dictionaries, and allocates a reference
tuple, that indicates a global value offset. An SDC
group can zero-out the default tuple by adding it to the
dictionary and subtracting it from the reference tuple
and converted to SDCZ, meaning dense compressed
formats still can exploit the common elements and
perform similarly to sparse linear algebra.

Constant Encodings (CON): CON encodings are used for empty, constant columns, and
constant tuple column groups. CLA encodes such groups using run-length encoding (RLE).
However, RLE is inefficient because CLA would require runs to be processed, while most
linear algebra operations would perform much more efficiently on constant groups. Instead,
we specialize with constant groups in order to simplify operations with compressed outputs,
and leverage the constant groups in some operations to set constant global offsets and inject
sparse operations to otherwise dense column groups.

3.1.2 Index Structures for Compression
Dictionaries: CLA uses basic FP64 (double) dictionaries. In contrast, AWARE generalizes

the data binding of dictionaries and uses basic FP64, sparse CSR matrices, and specialized
identity matrices. The more columns co-coded, the more zeros might be included in unique
tuples and thus, warrant a sparse dictionary. AWARE does not share dictionaries across
multiple column groups like CLA does in some cases.

Index Encodings: The different column group implementations share common primitives
such as Map and Off, of different value types (not shown in the figure). Map supports encodings
in Bit, Byte, UByte, Char, Char+Byte and Int, while Off supports delta-encoded Byte, UByte
or Char arrays, and specializations for one/two offsets. Once column groups encode thousands
of columns together, the column indexes can be the bottleneck. Therefore, we also have
specializations for column indexes in form of range indexes, and recursive indexes for joining
column groups without extra allocations.

Overlapping Column Groups: AWARE allows column groups to overlap with partial
sum semantics. Multiple column groups may refer to the same column but store separate
dictionaries and index structures. Overlapping helps column groups preserve (and due to
compression, eliminate) structural redundancy of intermediates for chains of operations such
as matrix multiplication, row sums aggregation, and scalar or column addition.

3.1.3 Online Compression Sequence
Our compression algorithm aims to reduce the online compression2 time, introduce workload-
awareness via generic cost functions (computation, memory or combinations), and handle
matrices with many columns. Together, solutions to these issues, allow us to apply compression
for a wide variety of inputs and intermediates with robust performance improvements. Given
an uncompressed matrix, the AWARE compression algorithm as shown in Figure 3.3 and
Algorithm 1. The figure highlight structural differences from CLA with red, however individual
parts have also been reworked. The AWARE compression comprises the following phases:

a) Classifying: For efficient compression planning, we first obtain an index structure
(dense or sparse for DDC or SDC) for each column in a sample of the input matrix, as well as
counts of non zeros (NNZ) per column in the input matrix. Using the index structure and
NNZ count, we compute summary statistics for individual columns (e.g., the frequency of

2Online compression refers to the compression of inputs or intermediates during runtime of a linear algebra
program (e.g., after reading uncompressed inputs).
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Figure 3.3: AWARE Compression Sequence, comparable to CLA Figure 2.11.

Algorithm 1 AWARE Compression Algorithm
Require: Matrix input X ∈ Rnxm return G
Is ← ExtractIndexStructures(Sample(X)) ▷ Is is the index sample, |Is| = m
Gq ← Classify(Is) ▷ Abort location, Gq is the estimated compression, |Gq| is here = m
P ← Grouping(Gq, Is) ▷ Abort location, P is the compression plan
(M, t)← Transpose(P, X) ▷ If t is true then M = X⊤ else M = X
G ← Finalize(Compress(P, M, t)) ▷ Final abort location

distinct items), estimate the cost of the individual columns, classify columns as compressible
or incompressible, and extract empty columns. For classifying a column or list of columns,
the same summary statistics are needed, irrespective of optimizing for workload cost or size
in memory. Compared to the CLA compression algorithm—where the entire uncompressed
matrix was transposed first for efficient extraction in Classify and Compress—we benefit
from working only with small index structures until deciding on aborting the compression for
non-amenable matrices. Furthermore, we gain more efficient sample extraction, and bounded
temporary memory requirements for incompressible matrices.

b) Grouping: Column co-coding seeks to find column groups in order to exploit redundancy
among correlated columns. AWARE introduces two techniques to improve CLA’s co-coding
algorithm. First, instead of extracting statistics from the sample when combining columns, we
combine the index structures of two already extracted groups from the classification phase
or previously combined columns. Algorithm 2 combines two dense index structures (Ir and
I l) into a combined index structure Ic. This algorithm allocates a mapping M that is able
to encode all possible unique mappings from combining Ir and I l by the product of their
numbers of distinct items dl and dr. Further specializations are algorithms for sparse-sparse
and sparse-dense combining. Second, we introduce a new co-coding algorithm (see Algorithm 3)
that uses a priority queue Q for sorting columns (or column groups) based on a configurable
cost function, and combines groups at the head of the queue. We found that starting with
this new co-coding algorithm and switching to a greedy combining approach at a threshold
number of remaining groups gives a good balance of compression time and quality. In cases
with millions of columns, we do a static partitioning of the columns to available threads and
combine columns in a thread-local manner.

Algorithm 2 Combine Algorithm for Dense Index Structures
Require: Index structures for two groups I l, Ir

return Combined index structure Ic

M ← I[dl · dr] , u← 1 ▷ Allocate map of possible distinct size
for i← 0 to n do

m← I l
i + Ir

i · dr ▷ Calculate new unique index
if Mm = 0 then ▷ Non-existing value at the unique index

Mm ← u++ ▷ Assign unique index to next unique value
end if
Ic

i ←Mm − 1 ▷ Assign output to map value at unique index
end for
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Algorithm 3 PriorityQueue Co-coding Algorithm
Require: A queue of all current index structures Q

return A list of index structures G
while Q.peek ̸= NULL , Il ← Q.poll do ▷ Remove cheapest Index
Ir ← Q.peek ▷ Look at next cheapest Index
Ic ← combine(Il, Ir) ▷ Combine two cheapest
if Ic.cost < Il.cost + Ir.cost then ▷ Costs of combined is lower

Q.poll , Q.put(Ic) ▷ Remove Ir from queue and add Ic

else
G.add(Il) ▷ Add cheapest (already extracted) to output

end if
end while

Asymptotic Change: Both index structure combining and the new co-coding algorithm
modify the asymptotic execution time of the column grouping. Combining the index structures
makes the worst-case dense operations O(n) to combine two column groups if n is the number
of rows in the sample, rather than O(|n(Gic + Gjc)|) that adds the number of columns of
either column group combined. If both sides use sparse index structures, then the runtime is
better O((Gc

i µ) + Gc
j µ) since we only have to process uncommon elements of each. Similarly,

the co-coding algorithm changes the runtime of combining columns from a greedy O(m2) to
O(m) because each iteration of the while loop reduces the queue size by one and the queue is
guaranteed to start at m column groups.

c) Transposing: The uncompressed input matrix can be transposed (columns in row-
major) if the compress phase would benefit from sequential access and amortize such data
reorganization. This decision is dependent on the data characteristics (e.g., matrix dimensions,
dense or sparse) and the chosen compression plan (e.g., co-coded columns). In general, it
is more efficient to compress column groups with many columns in a non-transposed input,
while for few column column groups, is better with transposition. At the time of writing
the thesis the transposition rules is never to transpose if the input is a dense matrix, while
if it is sparse only transpose if the number of columns and rows is large, if the number of
non-zeros is low, or if there is more columns than one per 30 column groups. The decision to
transpose can be further tuned depending on the selected encodings from the compression
planning, but the decision tress heuristics is applied currently. The AWARE paper had slightly
different rules [23], that have been updated based on more specializations of compressions in
the following compression phase.

d) Compressing: During compression, we take the input matrix and compression plan
(co-coding decisions, and column-group types), and create the compressed column groups.
CLA would first extract its single- or multi-column uncompressed bitmap as a canonical
representation of distinct tuples and offset lists per tuple. With these temporary offset lists, it
would re-evaluate the group types, and finally create the physical encoding of the compressed
column groups, which involves various specializations (e.g., delta-encoded offsets) for smaller
code words. However, AWARE instead skips the bitmap construction in most cases, and
instead directly allocates the requested compression type while having a fallback to CLA’s
bitmap if it fails. An example is the directCompressDDC method, that first allocates a
mapping that is guaranteed to be able to hold up to number-of-rows unique elements, and
then (possibly in parallel row blocks) parse rows and collect unique tuples for a dictionary and
assign the map in a single pass of the input matrix. Once all rows are processed, we allocate
the dictionary, and resize the mapping to an optimized allocation. Once any column group is
compressed—and it is beneficial in terms of workload costs—we analyze if we can sparsify its
dictionary via a FOR encoding, and if so apply the transformation. In contrast to CLA, we
apply no corrections for estimated compressible but actually incompressible columns because
the estimators and co-coding show robust behavior.
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e) Finalizing: In a last phase, we perform compaction of special groups, and compare
costs of the actual compressed representation with the uncompressed costs (and abort if
needed). Finally, we cleanup all temporary buffers but keep a soft reference (subject to garbage
collection under memory pressure) to the uncompressed block to skip potential decompressions.

Parallelization Strategies: When compressing distributed matrices, blocks are
compressed independently in a data-parallel manner with single-threaded compression per
block. In contrast, local, in-memory compression utilizes multi-threading with barriers per
phase. Classify parallelizes over columns, Grouping over blocks of columns, Compress over
column groups and in some cases row partitions, and Transpose uses a multi-threaded cache-
conscious uncompressed transpose operation. A more fine-grained parallelization with a task
graph [167] is interesting future work.

Performing linear algebra operations—like matrix multiplications, element-wise operations,
and aggregations—on compressed matrices can improve memory-bandwidth requirements and
cache utilization, reduce the number of floating point operations, and preserve structural
redundancy across chains of operations. AWARE makes extensions for compressed matrix-
matrix multiplications and compressed intermediates, which broaden its applicability.

3.1.4 Compressed Design Principles
As a basis for discussing compressed operations, we first summarize underlying design principles.

Definitions and Scope: We define sparse-safe operations as operations or aggregations
that only need to process non-zero input cells. For example, round(X) is sparse-safe, while
exp(X) is sparse-unsafe because exp(0) = 1. Special values like NaN (not-a-number, with
NaN · 0 = NaN) are not supported in compressed operations because they render sparse linear
algebra invalid [215]. We allow compressing matrices that contain NaN values and further
allow users to replace all instances of NaN with numbers on the compressed matrices, but if
the compressed matrices contains NaN the results are not guaranteed.

Design Principles: Many of the AWARE operations share the following design principles.
Compared to CLA, AWARE applies these principles to more operations and generalizes them
with the goals of redundancy-exploitation and minimizing total execution time.

• Shared Index Structures: For operations only modifying distinct values (e.g., X · 7), we
use dictionary-local operations, and shallow-copy the index structures into the output.

• Memoized Tuple Frequencies: Operations like sum(X) aggregate the distinct tuples
scaled by their frequencies. To avoid redundant computation, we memoize computed
frequencies and retain them on shallow-copies of indexes.

• Exploited Structural Redundancy: While many sparse-unsafe operations can be executed
on compressed matrices, they can require the materialization of zero, which often creates
large unbalanced groups. Instead, in AWARE, we exploit both sparsity and redundancy
via the handling of default values, as well as preserve structural redundancy across
operations, and perform low cost morphing of groups to better similar column groups.

• Soft References: We keep useful but re-computable data structures (e.g., decompressed
data, offset pointers to indexes, and tuple frequencies) on soft references. Any serialization
or memory estimates do not include these cached objects. Soft references allows the JVM
to evict them under memory pressure, and we can recompute any of these intermediates
on such occurrences.
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Figure 3.4: Example of AWARE Binary Subtract 7 Operation Matrix Compression.

3.2 Compressed Operations
The compressed AWARE operations are modifications of the original CLA operations. While
an initial look to some operations might not seem novel, it is the set of changes of the entire
set of operations and novel techniques for delaying computation as much as possible that really
makes it fundamentally different from the design and approach in the original CLA papers
and implementation.

3.2.1 A Motivating Operations Example
Figure 3.4 shows an example of performing a binary elementwise subtraction of 7 to all
cells. The input is the compressed matrix from Figure 3.1. The figure shows two alternative
compressed outputs.

Option A: Option A constructs an overlapping result. The overlapping result contain
pointers to the input compressed block’s column groups, and a new constant column group is
overlapped onto the compressed output. The new overlapping group contains the constant -7
that is subtracted from all columns. The overlapping state allows us to additively decompress
all column groups on top of each other to produce the uncompressed matrix. This first option
only allocates and assigns a vector in the number of columns of the compressed input, O(m).

Option B: Option B shows how pushing down the operation into the encodings can change
the compressed type, from for instance the DDC type to a DDCFOR type on column 0. To
change the type to FOR, we simply store an additional reference tuple with one value per
column of the column group. This option does some operations depending on the type of input
column, however most columns are able to change into a FOR version making the operations
similarly scale in the number of column inputs. Worst-case scaling is O(∑︁|G|

i=1 diGic).
The Effect: The benefit of these two tricks is that scalar operations reduce operation

time from in the size of the dictionary’s unique tuples (times columns) O(∑︁|G|
i=1 diGic) to

scaling only in the number of columns O(∑︁|G|
i=1 Gic) equal to O(m) if not in overlapping state.

However, the downside is if subsequent operations are not necessarily supported on FOR types
of columns, but as seen later, it is not a problem once we introduce morphing compression to
cheaply change between encodings. The subsequent sections describe in detail the individual
operations, and how to efficiently execute them on encoded formats.

42



3.2 Compressed Operations

Map Dict
0 1
1 7
0
1
0
1
0
1
0
1

Off Dict
1 4
2
2 Def
4 7

SDCS{0}DDC{0}
Compressed

1 + 4
7 + 7
1 + 4
7 + 7
1 + 4
7 + 7
1 + 7
7 + 7
1 + 4
7 + 7

Additive
5
14
5
14
5
14
8
14
5
14

Uncompressed

Figure 3.5: Overlapping Column Group Example

3.2.2 Overlapping Column Groups
After specific operations have to deal with—but can also leverage and propagate—the
overlapping state with partial sum semantics. Figure 3.5 shows an example of two groups, and
how they decompress additively. We implemented all column groups such that they always
decompress additively to the output matrix. The additive decompression means, in practice,
that the column groups do not need to contain information about being in an overlapping
state and can process operations pushed to them with no modifications to code. However, the
methods calling into a compressed matrix block with overlapping column groups have to in
most cases modify their behavior.

Operations With Overlapping Output Cells: Many overlapping operations fall into
a category of overlapping output cells where multiple column groups’ output aggregate into
the same uncompressed cells. Full or column aggregation like sum or mean therefore have to
maintain thread-local results or locks on output matrices. Similarly, LMM is implemented and
TSMM also work with careful assignment to outputs.

Operations Supported on Overlapping State: There are many operations, where the
overlapping state that does not need modifications including matrix-scalar or matrix/row-vector
multiplications. However, once the compressed matrix is in an overlapping state we can only
push down linear binary operations. All other operations require decompression. The reason
linear operations work is because of the associative property ((a + b) + c = a + (b + c)) and
distributive property (a · (b + c) = ab + ac) of linear operations. In essence, we can perform a
scalar multiplication by the distributive property by pushing down the operation on all column
groups. Similarly, we can perform scalar addition by adding an overlapping column group to
the stack of overlapping groups because of the associative property.

Fully Decompressing: When some operations that are supported in compressed space,
does not work in overlapping. All non-linear operations require decompression, such as pow(X2),
ReLU() and abs(). Comparison between values, such as <, also break therefore also aggregations
like max(X), colMins(X) where values also have to be compared decompress. In other words,
operations like min/max/pow or matrix-matrix operations are not supported in overlapping
state because these types do not distribute over sums. More critically, commonly-used activation
functions contain some non-continuous functions, that require decompression. For the most
used of these operations, we have implemented variations that fuse the decompression into an
output matrix and in-place operations on the output matrix.
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3.2.3 Aggregations on Compressed Data
Aggregations on lightweight compression schemas is probably the most well-studied operation,
since it it very simple and effective in the domain of DBMS systems. Aggregations like sum(Gi)
or colSums(Gi) pre-aggregate counts and then scale and accumulate the dictionary Di. In CLA,
column group types like OLE only need to aggregate segment sizes, but DDC column groups
still required a full scan of the index structures. In AWARE, the most common column groups
are DDC and SDC. Table 3.3 shows the asymptotic operational performance of performing
sum and max on a compressed matrix. Memorizing the tuple frequencies, Fi, of each unique
value in the dictionary, Di, changes the asymptotic behavior of sum and mean removing the
need to iterate thought all rows first to collect a count. Instead, the compressed operations
simply loop through the dictionary and sums dictionary tuples one at a time, to then multiply
with a frequency and add to the global sum. The compressed sum operation of a single column
group can therefore be defined as:

sum(G) =
d∑︂

i=1
Fi ·

Gc∑︂
j=1
Di,j = ⟨F , rowsum(D)⟩

Asymptotic Change: Maintaining the counts changes the runtime from O(GidGic + n)
to O(GidGic). Aggregating operations such as max or min, do not need the tuple frequencies
and therefore already perform efficiently similar to sum, O(GidGic).

Column Aggregation: Aggregating over the columns is similarly improving its
performance if we maintain the count. The main difference from full aggregation is maintaining
which columns each encoding aggregates into. Another difference only for sum is that we
multiply directly each value instead of after summing a dictionary tuple.

Row Aggregation: Row aggregates are challenging because they are perpendicular to
the column-encoded groups. In the min and max operations, we have to loop over all column

Table 3.3: Linear Algebra Asymptotic Runtime of Single Column Groups. This Table
Shortens Column Group Gi to G and use m = Gic. FDC is Fused Decompression and

Operation. Table 2.2 Contains Missing Definitions.
Algebra sum(G) max(G) G + x G · x

Type all col row all col row c rv cv M c rv cv M

DDC O (dm) O (dm) O (n + dm) O (dm) or O (m) FDC O (dm) FDC
SDC O (dm) O (dm) O (n + dm) O (dm) or O (m) FDC O (dm) FDC

SDCZ O (dm) O (dm) O (n + dm) O (dm) or O (m) FDC O (dm) FDC
SDCS O (m) O (m) O (n + dm) O (m) FDC O (m) FDC

SDCSZ O (m) O (m) O (n + dm) O (m) FDC O (m) FDC
CON O (m) O (m) O (n + dm) O (m) FDC O (m) FDC

FOR O (dm) O (dm) O (n + dm) O (dm) or O (m) FDC O (dm) FDC
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Table 3.4: Binary Operations Scalar or Row-vector Change of Encoding
Input Plus/Minus Multiply/Divide Modulus/Power
DDC DDCFOR DDC DDC

DDCFOR DDCFOR DDCFOR DDCFOR
SDC SDCFOR SDC SDC

SDCFOR SDCFOR SDCFOR SDCFOR
SDCZ SDCFOR SDCZ SDCZ
SDCS SDCS SDCS SDCS

SDCSZ SDCS SDCSZ SDCSZ
EMPTY CONSTANT EMPTY EMPTY

CONSTANT CONSTANT CONSTANT CONSTANT
UC UC UC UC

groups and find the minimum across encodings, making the execution scale in the number of
column groups in the input times the number of rows O(n ∑︁|G|

i=1 diGic). There is one exception,
if we only have one column group for the entire matrix, then we can simply aggregate the
dictionary. For sum, it is different because we can leverage the overlapping concept. If there is
few column groups compared to number of columns, it makes sense to make an overlapping row
sum. Overlapping rowsum performs a row sum on each dictionary of each column group and
returns an overlapping compression containing all the initial column groups index structures,
but with rowsummed dictionaries, and column indexes all set to zero. Additive decompression
of the overlapping result then is equivalent to the uncompressed rowsum.

Cumulative Sum: While not implemented, the column cumulative sum operation also
fits nicely with AWARE. Cumulative sum is found many places in Linear algebra workloads.
In compressed space if, for instance, the input column is a DDC encoded group, then we can
simply return the DDC mapping and dictionary, and change it to a Delta DDC group. When
decompressing the delta group, we would maintain the cumulative values so far, and add them
to the current decompressing row. However, we have left this to future work, since we did not
see a concrete application yet.

3.2.4 Binary Element-wise Operations
For matrix-scalar and matrix/row-vector operations—as used for standardization (e.g., X−
colMeans(X)—we further preserve the structural redundancy by handling default values in SDC
column groups (e.g., replace zero by column mean), leaving the index structures unchanged.
The AWARE compressed format supports comparative operations (<=, ==, >=, <, >, ! =),
multiply, addition, power, subtraction, modulus and bitwise operations.

Scalar and Row-vectors: We showed an example of scalar subtraction in Figure 3.4.
Operations with row vectors can similarly be processed on the compressed representation
without decompression by pushing the operations down into the individual column groups.
The only contract each group have to adhere to is to not reallocate their index structures but
only modify their dictionaries and/or reference values. Plus and Minus have the added ability
to choose if we want to add the overlapping group, instead of applying to the column groups.
Other operations, such as multiply, always have to be pushed down, because the overlapping
concept is an additive one, not multiplicative. This approach is fundamentally different from
the other compressed linear algebra frameworks that rely on sparsity, TOC [147], GLA [77],
CSER [241], and sHAM [157], because we can exploit the original sparsity/redundancy though
densifying operations such as binary plus. Table 3.4 shows how individual column groups
can change the encoding type based on the operations performed. Notably, the densifying
operations in many cases change the encoding into a FOR type. While some operations can
push down into the dictionaries, keeping them as reference values of FOR is cheaper, and
subsequent operations can then choose if it is more efficient to morph the encoding schemes.
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Column-vectors or Matrices: If the other side of the binary operation is a full matrix
or a column vector, then we have to decompress. The decompression happens because the
compressed representation’s index structure Ii does not align with the uncompressed vector or
matrix input. Luckily, we do not have to decompress our compressed matrix fully to then do
the operation, instead we fuse the binary operator with the decompression.

Fused Decompression: We implemented an fused decompression in cases where the
operations are not supported, or we perform a non-linear operation on an overlapping
compressed representation. The fused operation decompresses small row blocks in parallel into
the output matrix, and applies the binary operator in-place on decompressed blocks.

3.2.5 Slicing
Linear algebra range selections, also called slicing, returns a given row and/or column range
from a matrix. Slicing translates nicely to compressed operations. However, slicing does leave
choices in returning compressed or uncompressed results depending on the size of the slice.
Normal uncompressed slicing’s asymptotic behavior scales in the number of cells extracted
O(rnrm), where rn is the range length in rows and rm is range length in columns.

Row Slices: Selecting full continuous row sections from the compressed data is fairly
cheap, with worst cases O(rn|G|). The row slicing is done by slicing the index structures and
keeping a pointer to the input’s dictionaries. We use this approach to tile compressed matrices
for I/O, broadcasting to Spark. However, if the slice is small compared to the dictionary,
then the compressed output could be substantially bigger than the uncompressed version. In
such cases, we selectively decompress the selected range directly into an uncompressed output
matrix, without first slicing the index structures.

Column Slices: Full column slices, on the other hand, do not need to edit index structures
at all and performs even better, because of the column-oriented compression scheme. These
properties translate to only editing the column indexes, and quickly removing column groups
that do not have a column index within the selected range. We can quickly filter because
the column indexes stored in the column groups is guaranteed sorted, which is one of the
requirements in the compression scheme. The asymptotic time is O(rm), but it does not reflect
the actual speed.

Inner Slices: For any inner slice, we decompose it into first a column slice, and then
performing the row slice. The order allows us to reuse the code for both of the above
implementations. Slicing continuous ranges of rows from compressed frames and matrices is
important for mini-batch algorithms, pre-processing, and writing. Additionally, data-centric
ML pipelines often sample or select rows from input datasets via so-called selection matrix
multiplications. In order to support these operations.

3.2.6 Matrix Multiplication
CLA [74, 75, 73] supports only matrix-vector and vector-matrix multiplications directly
on compressed representations, but emulates matrix-matrix multiplications via repeated
slicing and matrix-vector multiplications. This approach provides simplicity and reasonable
performance, but looses performance as the size of the second matrix increases, which is
common in applications like multi-class classification, dimensionality reduction, and clustering.
Other previous work like TOC [147] supports matrix-matrix multiplication. However, they
rely on a single encoding for the entire matrix, or mini-batch. Similarly the other compressed
linear algebra (GLA [77], CSER [241]) rely on a single global encoding. Furthermore, many
of them do not efficiently process dense compressed matrices. In this section, we introduce
simple yet impactful techniques for matrix-matrix multiplications on lightweight compressed
matrices, including special cases of compressed-compressed multiplication.

Pre-aggregation: A central technique of compressed matrix multiplications in AWARE
and CLA are different forms of pre-aggregation over the distinct tuples. In AWARE, we vectorize
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Figure 3.7: Example Pre-aggregation in Compressed Matrix Multiplication.
Left is for LLM and right is RMM.

such pre-aggregation for improved simplicity and performance. For instance, Figure 3.7 shows
the intuition of pre-aggregation in left and right matrix multiplication. First, for a left matrix
multiplication AGi with an uncompressed vector A, we initialize a zero vector Pi, and accrue
the entries of A according to indexes Ii. Subsequently, a simple uncompressed vector-matrix
multiplication PiDi of the pre-aggregates and the dictionary yields the overall result (for
columns of the column group). Instead of multiplying all entries with the same distinct value
(or tuple in case of co-coding), we simply distribute multiplication over addition. Second,
for a right matrix multiplication Gi B with an uncompressed vector B (subset relevant to
the column group), we first compute a matrix-vector multiplication of Di B to get the pre-
aggregated vector Pi. If we stop the right matrix multiplication there, and simply keep the
P as a new dictionary it becomes an overlapping matrix. We can simply decompress to add
these pre-aggregated values to the output according to indexes Ii. Interestingly, a similar
pre-aggregation strategy is also applied as a general case for unnesting correlated subqueries
[170]. Given this vectorized form and the storage of dictionaries as uncompressed matrices, we
can directly apply cache-conscious uncompressed matrix multiplications for the general case of
left- or right-hand-side uncompressed matrices with k rows or columns, respectively. Dense
pre-aggregation, such as in DDC, have complexity in number of rows O(n). However, sparsity
exploiting encodings such as SDCZ can improve it to O(nnz(Gi)).

3.2.6.1 Left Matrix Multiplication
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Figure 3.8: Left Matrix Multiply (A@G).

We call the matrix multiplication A@G—where
the left-hand-side input A is uncompressed—a
left matrix multiplication (LMM). Figure 3.8
shows an LMM with two column groups, color-
coded blue with dots and green filled. For each
column group, we compute the pre-aggregated
k × di matrix Pi (via the already described vec-
torized pre-aggregation), then matrix multiply
Pi@Di, and finally, shift these results into the
correct column positions of the output matrix
R. Pre-aggregation for each column group is a scan of A, but for large index structures Ii, we
can utilize cache-blocking to reuse blocks of Ii from caches across multiple rows in A. The
more co-coding is applied, and/or the smaller the number of distinct items per group, the
more we benefit from LMM pre-aggregation in terms of reduced floating point operations and
data accesses. Multi-threaded LMM operations parallelize over column groups and rows in A
because they access disjoint output columns.
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Algorithm 4 Left Matrix Multiply With Pre-morphing
Require: Matrix input A, Column Groups G

return R
R← RArxGc , constV ← RRc , PreAggGroups← {}
for g ∈ G do ▷ Loop through all column groups

if g instanceof MorphingGroup then
gm = g.extractCommon(constV ) ▷ Sparsify morphing groups
PreAggGroups.add(gm) ▷ Add morphed groups to groups to perform LLM

else if g instanceof Const then
g.extractCommon(constV ) ▷ Constant groups can be removed from LLM

else
PreAggGroups.add(g) ▷ If modifications are unnessesary

end if
end for
rowSums← rowSum(A) ▷ Calculate the rowSums of L
for gm ∈ PreAggGroups do

R← R + LMM(A, gm) ▷ Add the output of each column group
end for
R← R + rowSums⊗ constV ▷ Add outer product of row sums and constantV

Pre-Morphing: As an optional preprocessing step we can cheaply morph column groups
that would perform better in other closely related formats, and extract a common multiplication
vector that we can multiply with a rowsum of the left matrix. Algorithm 4 shows the pre-
morphing in an algorithm environment. First, we allocate the standard output of the matrix
multiply, and then we loop though all groups to extract groups that benefit from morphing.
As an example SDC benefits, because it has a default value that in normal instances would
mean each value on the left matrix would have to be processed. While on the other hand
SDCZ is able to skip all the common elements. To morph the SDC into SDCZ is simply by
subtracting the common default value of SDC from all tuples in the dictionary, and adding
the default value to the commonV vector. Similarly SDCS morph to SDCSZ, DDCFOR to
DDC, and SDCFOR to SDCZ. Most of the morphing groups only modify values in the size of
their individual number of columns, making the modification very efficient and cheap. With
the constV extracted from the morphing groups, we can simply add a correction to the LLM
result by adding the dot product of the row sum of the left matrix and the constV to the
result matrix.

3.2.6.2 Right Matrix Multiplication
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Figure 3.9: Right Matrix Multiply (G@B)

Similar to LMM, we call a matrix multiplication
(G@B)—where the right-hand-side input B is
uncompressed—a right matrix multiplication
(RMM). Figure 3.9 shows an example with two
column groups. Our column-oriented compres-
sion and multiplication by B from the right,
provides an opportunity to preserve structural
redundancy and thus, avoid unnecessary de-
compression (aggregation into an uncompressed
output). The simple, yet very effective, key idea of our RMM is to only perform the vectorized
pre-aggregation Pi = Di@BGi by multiplying the column group dictionaries with related rows
in B, and then store these pre-aggregates as new dictionaries of overlapping column groups.
This way, we can leave the index structures I untouched and shallow-copy them into the
compressed output representation, preserving the source redundancy. Each output column
group now has dictionaries of size di × k. The individual column groups compute, again
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independent (but now overlapping) outputs and thus, multi-threaded operations parallelize
over column groups and columns of B. In distributed environments with block-local matrix
multiplications, the same RMM applies and overlapping outputs can be preserved (if beneficial
in size) through serialization and shuffling.

Pre-Morphing: Similarly to LLM, RMM benefits from morphing the column groups. We
allocate the constant vector and morph the groups to improve sparsity exploitation. The main
difference is that the vector is fully matrix multiplied with the right side matrix and added
as another overlapping column group to the output. In cases of recurrent multiplications the
overlapping constant vector group is reused and the number of groups do not grow.

3.2.6.3 Self Matrix Multiplication

Di

Di Si Gj
i

ColGroup
TSMM

ColGroup
MM

Logically Transposed Dictionaries

Figure 3.10: Transpose-Self MM(G⊤ G)

Transpose-self matrix multiplication (TSMM)3

X⊤ X or X X⊤—whose outputs is known to be
symmetric—appears in many applications such
as closed-form linear regression, co-variance and
correlation matrices, PCA, and distance compu-
tations. We only implemented the inner TSMM,
X⊤ X, most commonly used. CLA emulates
TSMM again via slicing and repeated vector-
matrix multiplications. In contrast, AWARE
natively supports TSMM as shown in Figure 3.10, as well as compressed-compressed matrix
multiplications (with transposed left input), which are also commonly occurring in practice. A
TSMM is composed of pairs of column group operations, where blocks on the diagonal are
self-joins of column groups, while others are |G| · (|G| − 1)/2 combinations.

Self TSMM: A self-multiplication of a column group computes Si by using the tuple
frequencies of the column group Fi, and computes the results via a specialized uncompressed
TSMM of Di scaled by Fi on one side. We have implemented a specialization for dense or
sparse Di that multiplies the tuple frequencies in the TSMM loops. We further only calculate
the upper triangle of the TSMM diagonal blocks, and add its values directly to the output
matrix with no intermediate allocations. Overall, this implementation makes the diagonal self
blocks very efficient to compute scaling according to O(Gic(Gid)2).

ColGroup TSMM: The remaining blocks adopt the strategy of LMM: pre-aggregation
and matrix multiplication PiDi. However, given two compressed inputs, we can freely pick
the pre-aggregation side and alternatively, do (Pj Dj)⊤. In any case, the pre-aggregate is
computed without decompression and can exploit column-group characteristics (e.g., sparse,
non-default, or constant encodings).

Pre-Morphing: Again, similar to both RMM and LMM, we can pre-morph the column
groups to exploit more sparsity in the encodings, but in the TSMM case it is a bit more
complicated to add the correction. First, we calculate the column sum of the compressed
matrix, leveraging the efficient compressed column sum. Then, we can add the outer product
of the column sum and the constant vector extracted while morphing. However, to produce
correct results two other outer products have to be added with scaling in the number of rows
on the extracted column sum to take into consideration the extracted correction. Algorithm 5
shows how all three dot products can be fused into two loops, only calculating the top half.

Finalize: Finally, before returning the top diagonal of the matrix is copied down to the
bottom half. Only calculating the top halves the compute time of TSMM.

3.2.6.4 Compressed Matrix Multiplication

Currently, we support compressed matrix multiplication in all cases, with fallback to
decompression of one side if there is no specialized method for performing the full multiplication

3TSMM is also known as BLAS syrk (symmetric rank-k update) or Gram matrix.
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Algorithm 5 TSMM Correcting Dot Product
Require: Matrix output R, constV ← RRc , colsum← colsum(PreAggGroups)

return R
for row = 0 to n do

off← rows · row ▷ assuming a dense linearized output R
v1← constV [row] ▷ Dot product 1
v2← colsum[row] + constV [row] ∗ nRow ▷ Fused dot product 2
for col = row to n do ▷ Only top half of the matrix

corection← v1 · colsum[col] + v2 · constV [col] ▷ Other half of dot products
R[off + col]← R[off + col] + corection

end for
end for

compressed. In general, the rule is to try to perform an RMM type of multiplication if
possible because of the better characteristics of constructing an compressed overlapping output.
However, we do support a specialized LLM version of C = AtB (A and B is compressed),
because the output tends to be a small uncompressed matrix.

Specialized TCLMM: Algorithm 6 shows the double compressed left transposed matrix
multiplication. Similar to TSMM, it utilize the column group multiplication, just on every
column group instead of only the upper triangle. This multiplication also leverages the
pre-morphing of column groups to improve the operations performance. To correct for the
pre-morphing, we perform three dot products afterwards similar to TSMM however with
some differences. First, we have to get the column sum of either compressed matrix input.
Computing column sums is, as stated before in Section 3.2.3, very cheap in compressed spaces.

Parallelization: Parallelizing the double compressed multiplication can be a bit tricky.
We have tried making a task of each column group multiplication, however that parallelization
was too fine-grained, and many cores would have to load different column groups more or less
randomly. In the end, we settled for a row group per task scheme, such that each inner loop in
Algorithm 6 is run in parallel. Notably, it is only possible to perform the operation in parallel
if there are no overlapping column groups, otherwise each thread would add into the same
output cells. The final correcting dot products have to be done after the full multiplication, or
selectively together with non overlapping column goups ranges once their tasks are finished.
A future work in the compressed multiplication include fuse all the last level dot products
into a specialized kernel similar to a matrix multiplication. This fused operator could then be
executed in parallel over blocks.

Algorithm 6 Left Transposed Compressed Compressed Matrix Multiply
Require: Column Groups left Gl, Column Groups right Gr

return R
R← RGl

cxGr
c

PreAggGroupsl, constV l ← prefilter(Gl)
PreAggGroupsr, constV r ← prefilter(Gr)
colSumsl ← colSum(PreAggGroupsl)
colSumsr ← colSum(PreAggGroupsr) ▷ Each colsum scale in O(∑︁|G|

i=1 diGic)
for gl

m ∈ PreAggGroupsl do
for gr

m ∈ PreAggGroupsr do
R← R + leftMultColGroups(gl

m, gr
m)

end for
end for
R← R + constV l ⊗ (constV r · Gl

r) ▷ Dot product scaled by rows
R← R + constV l ⊗ colSumsr ▷ Two other correcting dot products
R← R + colSumsl ⊗ constV r ▷ Each dot product is O(Gr

cGl
c)
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Table 3.5: Complexity of Compressed Matrix Multiplications.
Uncompressed AWARE

(dense) (multiple column groups)

LMM O (knm) O
(︂
k(∑︁|G|

i=1(Gic(|Gc
iµ|+ di))

)︂
RMM O (nmk) O

(︂
k

∑︁|G|
i=1(diGic)

)︂
TSMM O (︁

nm2)︁ O
(︂∑︁|G|

i=1(Gic(diGic + ∑︁|G|
j=i+1(|Gc

jµ|+ djGjc))
)︂

TCLMM O (m1nm2) O
(︂∑︁|G|

i=1(Gic
∑︁|G|

j=1(|Gc
jµ|+ djGjc))

)︂
SLMM (sparse) O(km) O(km)

3.2.6.5 Selective Matrix Multiplication

Another type of matrix multiplication we added a specialization for in BWARE is selective
matrix multiplication (SLMM). Selecting a random sample from a matrix can be done via
matrix multiplication. If we define a sparse matrix S, with a single 1 in each row and then
left matrix multiply it with a matrix X, this operation selects rows from X. A 1’s position in
S determines the source row by its column position and the target row by its row position.
This multiplication is, for instance, used in random reshuffling of a matrix before SGD. For
compressed selection multiplication, we use a left compressed matrix multiply that does
not pre-aggregate the intermediate matrix, unlike GCM [77], TOC [147], AWARE [23], and
CLA [74]. Instead, we use the non-zero values of the left side matrix (guaranteed to be all 1)
to selectively extract compressed row tuples, and decompress them into the output matrix.
This solution leverages the index structures of the compression schemes.

Future Work: We did not implement a version that returns a compressed matrix,
because we only had use cases where the selection in the workloads was very small, e.g.,
cluster initialization points. Therefore best for performance of subsequent operations was
an uncompressed output. However, if one want to randomly sample large samples from a
compressed matrix, it would make sense to implement a version that would extract index
structures from the column groups and return compressed matrices instead.

3.2.6.6 Matrix Multiplication Asymptotic Runtime

The asymptotic runtime of the compressed multiplications can be a bit difficult to quantify. In
detail, Table 3.5 compares the asymptotic behavior of uncompressed matrix multiplications
with related AWARE operations. Uncompressed LMM and RMM have both cubic complexity,
while sparse linear algebra can improve by computing only non zero elements on either side,
at an increased cost to each operation due to indirections though sparse index structures. In
contrast, compressed LMM and RMM have a complexity has depends on the data characteristics
(distinct items and co-coding per column group). To further complicate the analysis, normal
multiplication does multiplications and additions together. While the compressed matrix
multiplication have different phases, where pre-aggregation only use additions and dictionary-
based matrix multiplication use a standard matrix multiplication.

LLM Cases: With substantial co-coding (e.g., |G| = 1 ∧ Gic = m) and few distinct items
di ≪ n, a much better complexity than the uncompressed is possible (O(k(nnd(Gi)) + kdim)
instead of O(knm)). In the worst-case, |G| = m and di = n, gives a compressed asymptotic
runtime equal to uncompressed, but with a higher constant factor.

RMM Cases: Because RMM does not iterate through I it has a lower asymptotic
behavior than LMM, and thus, we already benefit with less favorable data characteristics the
same worst-case guarantees apply, even with subsequent decompression.

TSMM Cases: TSMM is more complex, but the first term in the outer sum operation
represents self-joins per column group (including pre-aggregation). These self joins scales
O(Gi

2
cdi) for each column group but they only have to calculate half of their specific output

matrix, and they are very cache-friendly. The second term enumerates pairs of column groups
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with two sub-terms for pre-aggregation and scaling, each column group multiplication scaling
according to O(Gic(nnd(Gj) + djGjc)). The best case for TSMM is similar to LMM with
|G| = 1∧Gic = m removing the need for column group multiplications reducing the runtime to
O(mdim). The worst case increase the column group multiplications, that introduce overheads.

TCLMM Cases: The final compressed-compressed multiplication similarly benefit from
few column groups with many columns, reducing to a similar to LLM O(O(k(nnd(Gi))+kdim)).
However, with one major distinction, we can chose what side to pre-aggregate, and therefore,
leverage the best compressed side.

3.2.7 Decompression
Unsupported, not implemented, or operations that cannot be processed in the compressed state
of AWARE are handled via decompression. We use cache-conscious blocking for converting
the column-compressed matrix into either a row-major dense uncompressed matrix or a sparse
MCSR matrix. No matter which compressed state we are in, we decompress row blocks in
parallel for better cache efficiency.

Normal Decompression: The normal decompression decompresses at most one value
per cell in the output matrix, making it scale linearly with the number of cells, O(nm). In
sparse cases the number of values added into the output is less because we only add non-zero
elements to the output. However, exploiting sparsity requires either the encoding to be SDCZ
or a sparse dictionary in DDC or SDC. Similarly to the compressed matrix multiplications,
it can be beneficial to extract the common values from column groups, but if we extract the
common values, we only support decompressing into a dense matrix.

Overlapping Decompression: The overlapping decompression adds a term to the
asymptotic time complexity O(nm|G|) (worst-case of |G| overlapping groups). Therefore, we
want the optimizer to reduce the number of column groups with more aggressive co-coding if
we end up in a state with overlapping decompression. Although the overlapping decompression
is expensive, the pre-morphing allows each group to not add into every cell in the output,
making it essential in overlapping cases with many groups that can exploit Gc

iµ.
Partial Decompression: We also support partial decompressions to enable the operations

to process sub-parts of the matrix at a time. Partial decompressions are also used for slicing
operations, where if we slice sufficiently small blocks it is more efficient to just decompress
those cells.

3.3 Workload-based Adaptation of Compression Plans
Apart from reduced I/O and memory-bandwidth requirements due to the smaller compressed
size, compression can also reduce the number of floating point operations. Cost functions
based on asymptotic behavior of each compression type, together with estimated or observed
compression ratios, are the basis for our workload-aware compression planning, allowing
us to optimize for total execution time. AWARE aims to achieve broad applicability by
redundancy-exploitation and optimization for execution time. Instead of compressing input
matrices only according to data characteristics, we extract workload characteristics from the
given linear algebra program, and compress candidate inputs and intermediates in a data-
and workload-aware manner, and then leverage compressed data characteristics for a refined
compilation of execution plans.

3.3.1 Workload Trees
Given a linear algebra program, workload-aware compression selects intermediates as
compression candidates, and for each candidate extracts a workload tree (a compact workload
summary seen in Figure 3.11), evaluates its costs, and if valid for compression, injects a
compress directive that utilizes the workload for fine-tuned (i.e., workload-aware) compression.
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X

Cost Summary

User Script:

  = read("data/X")
y = read("data/y")

X = scale(X,TRUE,TRUE)
w = l2svm(X,y,TRUE,
      1e‐9,1e‐3,100)

write(w,"data/wXy")

if(shift)
 X = X ‐ colMeans(X)  
if(scale)
 X = X / colSds(X)

if(intercept)
 X = cbind(X,ones)
while(conto & i<maxi) {
 Xd = X %*% s 
 while(conti) {
  out = 1‐y*(Xw+sz*Xd)
  sz = sz ‐ g/h; # ...
 }
 g_new = t(X) %*% (out*y)
}
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Figure 3.11: Example showing a user script that reads a feature matrix X and label vector y,
normalizes X to mean 0 and standard deviation 1, and then trains an l2-regularized support
vector machine. These functions are themselves linear-algebra scripts. Assuming X as a
compression candidate, we extract the workload tree at the right, which contains 2 function
calls, 3 if branches, 2 nested while loops and 8 compressed operations and 1 decompression.
Aggregating the workload tree yields a cost summary for categories of operations.

Workload Trees: Many workloads in practice are complex linear algebra programs with
conditional control flow, non-trivial function call graphs, and thousands of operations. However,
compressing an input or intermediate often affects only a small subset of data-dependent
operations. We introduce the notion of a workload tree as a compact representation of these
operations to simplify optimization. A workload tree for a single candidate intermediate
represents the program hierarchy of conditional control flow (branches and loops) as well as
function calls as inner nodes, and relevant compressed operations as leaf nodes. Here, parent-
child relationships represent containment. For the sake of compactness, the tree comprises
only inner nodes that contain at least one compressed operation. Counting frequencies and
costing is then an aggregation across hierarchy levels. For loops, we multiply the costs by the
number of iterations. If the number of iterations is unknown (e.g., convergence-based loops),
we assume a constant 10 to reflect that operations inside the loop, are likely executed multiple
times. Some instructions are further multiplied by the dimensionality of the inputs, and if
unknown during optimization, a multiplier of 16 is used.

Workload Tree Extraction: Our initial candidate selection and optimization approach
relies on heuristics. We make a linear scan over the program, and extract compression
candidates by operation type (e.g., persistent reads, comparisons, ctable, and rounding) as
well as shape constraints (dimensions, and row/column ratios). Together, these heuristics find
good candidates while keeping the number of candidates low. For each candidate, we then
make a scan over the program and extract its workload tree by computing the transitive closure
of derived compressed intermediates (based on operation types that are known to produce
compressed outputs). Again, in a heuristic manner, we then evaluate individual candidates
independently without considering joint effects of groups of compressed intermediates. This
extraction also descents into functions, but via stack-based identification includes only the
first level of recursive function calls. In this context, we prune the unnecessary extraction
of workload trees for overlapping intermediates. We perform this extraction at the end
of inter-procedural analysis (IPA). At this point, literals and size information have been
propagated across the program and into amenable functions, and many simplifications have
been performed. In Figure 3.11, we would have propagated the shift, scale, and intercept flags,
removed unnecessary branches, and inlined the scale function into the main program.

Cost Evaluation: The workload vector summaries computed from the workload tree
serve two purposes. First, to compare to uncompressed operations cost and second, to guide
compression planning of individual column groups costs. The frequencies reflect the size
differences of intermediates via multipliers in the counts. We organize the cost summaries by
categories of operations with different behavior in compressed space: (0) Decompression, (1)
Overlapping Decompression, (2) LMM, (3) RMM, (4) TSMM, (5) Dictionary-Ops, and (6)
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Indexing-Ops. Decompression is the frequency of regular decompressions while overlapping
decompression converts the overlapping output into uncompressed form if operations are not
applicable on partial aggregates. LMM is multiplied by the number of rows on the left, RMM
is multiplied by the number of columns on the right, and TSMM includes counts of compressed
multiplications and transpose-self multiplications and is multiplied by the number of columns.
Dictionary operations can be performed directly on the compressed dictionaries (e.g., sum or
element-wise scalar operations). Finally, Indexing refers to the slicing of batches or blocking
during broadcasting. The cost vector also contains a boolean set to true if there are densifying
operations that would make an uncompressed input matrix dense somewhere in its workload
tree. The boolean does not accurately reflect the number of operations performed on dense vs
sparse intermediates. However, in densifying cases, the dense performance typically dominates
execution time. If the workload vector suggests that compressing an intermediate may be
beneficial, we make the cost summary globally available for subsequent runtime compression
instructions and inject the related compress directive.

3.3.2 Compiler Integration
A challenge is that compression happens at runtime, and thus, the estimated and actual
compressed size is unknown during initial compilation. Accordingly, we create—similar to data-
dependent operators with unknown output shapes [32]—artificial recompilation opportunities
by splitting basic blocks after injected compress directives. If a block contains multiple,
independent compress operators, we create a single cut for all.

Compression-aware Recompilation: If an operator is marked for distributed operations
due to unknown input/output dimensions or sparsity during initial compilation, the entire
DAG (basic block) is marked for recompilation during runtime. Workload-aware compression
leverages this infrastructure for obtaining the actual size of compressed in-memory matrices,
and propagating the compressed size bottom-up through the DAG. With this updated size
information, we can compile and execute refined partial execution plans. Affected decisions
include selected execution types (local vs Spark), and physical operators including broadcasting.

3.3.3 Workload-dependent Runtime Compression
The compress directives injected into the execution plan, perform compression as described in
Section 3.1.3, but for workload-awareness get the workload vector summary as input. The
workload vector influences the selection of column group types, co-coding decisions, and tuning
for compression ratios. During classification and co-coding, we estimate the column costs from
the sample, and then use these costs to decide on column groupings instead of grouping purely
for compression ratios. However, including I/O costs also enables adapting the compression
plans for large out-of-core datasets where good compression ratios are important to fit data in
memory and/or reduce I/O. Local compression directly leverages the workload vector, while for
distributed compression, we serialize the workload vector and compress blocks independently.
In the context of hybrid runtime plans—composed of local in-memory, and distributed Spark
operations—after compression, opportunities for compiling more efficient plans arise.
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Table 3.6: Datasets (n Rows, m Columns, sp Sparsity).
Dataset n (nrow(X)) m (ncol(X)) sp Size
Airline78 [17] 14,462,943 29 0.54 3.4 GB

Amazon [171, 105] 8,026,324 2,330,066 1.2e-6 1.22 GB
Covtype [71] 581,012 54 0.22 127 MB
Mnist1m [43] 1,000,000 784 0.25 2.46 GB

US Census [71] 2,458,285 68 (378) 0.43 (0.18) 1.34 GB
US Census 128x 314,660,480 68 (378) 0.43 (0.18) 289.5 GB

3.4 Experiments
This section contains the experiments from the AWARE paper [23]. The experiments
study AWARE in Apache SystemDS4 in comparison with uncompressed operations (ULA),
compressed linear algebra (CLA) [74, 75] in Apache SystemML, and different data types in
TensorFlow. We evaluate a variety of micro benchmarks, end-to-end ML algorithms, and
hyper-parameter tuning; with local, distributed, and hybrid runtime plans.

3.4.1 Experimental Setting
Hardware Setup: Our local and distributed experiments use a cluster of 1 + 11 nodes, each
with a single AMD EPYC 7443P CPU at 2.85 GHz (24 physical/48 virtual cores), 256 GB
DDR4 RAM at 3.2 GHz, 1× 480 GB SATA SSD, 8× 2 TB SATA HDDs (data) and Mellanox
ConnectX-6 HDR/200 Gb Infiniband. We use Ubuntu 20.04.1, OpenJDK Java 11.0.13 with
JVM arguments -Xmx110g -Xms110g -Xmn11g, Apache Hadoop 3.3.4, and Apache Spark 3.2.0.
The CLA baseline uses SystemML 1.2 with Spark 2.4 and equivalent configurations. Some
experiments marked with * were run on another cluster (for comparison) of 1 + 6 nodes with
AMD EPYC 7302 CPU at 3.0− 3.3 GHz (16/32 cores). 128 GB DDR4 RAM at 2.933 GHz,
2× 480 GB SATA SSDs (system/home), 12× 2 TB HDDs (data), and 2× 10Gb Ethernet.

Datasets: Since compression is strongly data-dependent, we exclusively use the real
datasets shown in Table 3.6. This selection includes dense, sparse, and ultra-sparse datasets
with common data characteristics. All reported sizes and compression ratios refer to the size in
memory using a sparsity threshold of 0.4 for uncompressed matrices. US Census [71] is further
used in an encoded form with binning/one-hot encoding for numerical, and recoding/one-hot
encoding for categorical features, resulting in an increase from 68 to 378 columns, and the
increased sparsity from 0.43 to 0.18, but with negligible change of the size in memory. For
large-scale experiments, we use a replicated versions of US Census Enc (up to 128x) which
is roughly 290 GB and after densifying operations more than 950 GB. The Spark default
configuration uses a storage fraction of 0.5, which gives an aggregate cluster memory of
6 · 105 GB · 0.5 = 315 GB. That way, we scale to data sizes that require I/O per iteration in
uncompressed representation.

3.4.2 Compression Performance
We first investigate the compression process itself in terms of compression times, compression
ratios, and the influence of workload characteristics.

Compression Ratios: Starting with local single-node matrix compression, we compare
AWARE optimized for memory (AWARE-Mem) and for workload (AWARE) with the
existing CLA framework [74, 75]. The used workload is a fixed cost summary of left matrix
multiplications that leads to extensive co-coding of columns. Table 3.7 shows the compression
times and ratios for all datasets, where the ratios are calculated from the sizes of in-memory

4All code and experiments are available open source in Apache SystemDS (https://github.com/apache/
systemds) and our reproducibility repository (https://github.com/damslab/reproducibility).
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representations. We attribute the minor differences to published CLA compression ratios [75]
(Airline78 7.44, Covtype 18.19, US Census 35.69) to different data preparation and sparse
memory estimates. Compared to CLA, AWARE yields worse compression ratios except for
CovType, where AWARE’s co-coding finds other column groups and uses new encoding types.
The lower compression ratios are due to the tuning for operations performance rather than
size, and in practice, moderate absolute differences of large compression ratios have only little
impact on size. For example, compressing a 1 GB input with ratio 7 versus 6 yields only a
difference of 24 MB. The Amazon dataset is an interesting case, where CLA runs out of
memory due to group memoization during co-coding (> 2.7 ·1012 pairs of columns). In contrast,
AWARE aborts the compression early because the estimated total costs exceed the costs of
ULA. Optimizing for memory in AWARE yields a low compression ratio for Amazon because
of object overheads per column group, which do not exist in ULA’s CSR representation.

Compression Times: Table 3.7 further shows the compression times for all datasets.
AWARE generally reduces compression times when optimizing for size (up to 8x) and cost (up
to 3.7x), which make compression easier to amortize. The speed difference in AWARE-Mem
US Census Enc is due to a reduction of the Grouping phase from 27 to 2.7 seconds. AWARE
generally reduces compression times when optimizing for size (up to 4.7x) and cost (up to
4.2x), which makes compression easier to amortize. The speed difference in AWARE-Mem
US Census Enc is due to a reduction of the grouping phase from 19 to 2.4 seconds. When
using workload-aware compression with a fixed cost summary that causes more grouping and
compression, only MNIST and US Census have significantly slower compression compared to
optimizing for memory. MNIST is slow because combining column groups have a large number
of distinct values (each column contains up to 256 distinct values, and three columns together
has up to 2563 distinct tuples).

Compression Ratio Spark: For distributed operations, matrices are represented as Spark
resilient distributed datasets (RDD) [255]—i.e., distributed collections of key-value pairs—with
values being fixed-size matrix blocks of size b × b (except boundary blocks). These blocks
are compressed independently with separate compression plans and dictionaries. The default
block size is b = 1K (8 MB dense blocks), but sparsity and compression warrant larger blocks.
Table 3.8 varies this block size b for US Census, and reports the size of AWARE-Mem, AWARE,
and uncompressed (ULA) RDDs (from Spark’s cached RDD-infos). With small blocks, there
is larger variability of compression, and increasing block sizes give better ratios while also
stabilizing the resulting compression plans. Overall, AWARE yields good compression ratios
even with small b and approaches local compression ratios with larger b. For the remaining
experiments, we use a block size of b = 16K.

3.4.3 Operations
In a second series of micro-benchmarks, we compare the runtime of AWARE with ULA and
CLA operations. While CLA was designed for operations performance close to uncompressed
and benefits from keeping large datasets in memory, AWARE aims to improve performance
more generally, even for in-memory settings and keep performance stable even if the input

Table 3.7: Local Compression Times [Seconds] and Ratios.
Dataset CLA AWARE-Mem AWARE

time ratio time ratio time ratio
Airline78 9.34 sec 10.22 1.74 sec 8.61 2.08 sec 7.94
Amazon 37.6 hours Crash 8.54 sec 1.73 3.77 sec Abort
Covtype 1.10 sec 13.79 0.84 sec 14.24 1.23 sec 13.99
Mnist1m 7.25 sec 7.14 4.57 sec 6.09 17.50 sec 4.41

US Census 5.15 sec 35.38 1.16 sec 29.60 1.15 sec 27.35
US Census Enc 27.48 sec 41.03 5.78 sec 38.46 6.54 sec 29.46
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Table 3.8: Spark RDD Compression (Data: US Census Enc).
AWARE-Mem AWARE

Blocksize Ratio Total Size Ratio Total Size ULA
1K 8.94 225.58 MB 7.83 257.36 MB 2.02 GB
2K 15.1 143.49 MB 10.9 198.55 MB 2.17 GB

16K 26.6 81.68 MB 23.3 93.36 MB 2.17 GB
64K 29.9 72.74 MB 23.4 92.96 MB 2.17 GB

256K 30.5 71.22 MB 24.5 88.70 MB 2.17 GB

Covtype Census AirlineMnist1m
Census Enc10 2

10 1

100

101

102

E
xe

cu
tio

n 
Ti

m
e 

[m
s] CLA ULA Mem AWARE

(a) Sum Original

Covtype Census AirlineMnist1m
Census Enc10 2

10 1

100

101

102

E
xe

cu
tio

n 
Ti

m
e 

[m
s] CLA ULA Mem AWARE

(b) Sum Dense

Covtype Census AirlineMnist1m
Census Enc10 2

10 1

100

101

102

E
xe

cu
tio

n 
Ti

m
e 

[m
s] CLA ULA Mem AWARE

(c) ColSums Original

Covtype Census AirlineMnist1m
Census Enc10 2

10 1

100

101

102
E

xe
cu

tio
n 

Ti
m

e 
[m

s] CLA ULA Mem AWARE

(d) ColSums Dense
Figure 3.12: Operations Performance Aggregate.
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Figure 3.13: Operations Performance Scalar.

data is densified. We compare both variants of original and densified data where for the latter
we simply add 1 to all cells.

Aggregations: Figure 3.12(a) shows the results for computing the aggregate sum(X).
CLA processes each column group in parallel, aggregates individual sums, and combines
them into the result. ULA uses multi-threading with sequential scans of row partitions. By
memorizing the frequencies of tuples, AWARE executes purely on the column group dictionaries
without scanning their indexes because of memoization. Without memoization, the execution
time increases according to the complexity of scanning the index structures. For instance, we
observed no penalty in case of Census Enc, while 60x performance drop in Census for AWARE.
When densifying, in Figure 3.12(b), CLA and AWARE retain their performance while ULA’s
performance worsen. For column aggregations (Figure 3.12(c) and Figure 3.12(d)), CLA is
slower than ULA because CLA’s DDC colSums is not specialized for DDC1 and DDC2 and
thus, performs a lookup of dictionary values for each encoded cell.

Element-wise Operations: Figure 3.13(a) shows the performance of adding a scalar
value to each matrix cell. We observe extreme speedups of up to 10,766x because AWARE
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Figure 3.14: Operations Performance Left Matrix Multiplication.
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Figure 3.15: Operations Performance Right Matrix Multiplication.

avoids modifying dictionaries where possible. Figure 3.13(b) shows similar improvements for
matrix-vector (row vector) element-wise operations. Specifically, we analyze X/v on sparse
(not shown) and dense representations, where we chose division because it forces modifications
of the dictionaries. We still see speedups of about three orders of magnitude (2,047x).

Left Matrix Multiplication (LMM): Left, right, and transpose-self matrix multipli-
cations are key operations in many ML algorithms. In the following, we first evaluate these
operations independently. Figure 3.14(a) shows the results of left matrix multiplications
for all datasets, where the uncompressed left-hand-side has 16 rows. CLA emulates this
matrix-matrix multiplication via 16 vector-matrix multiplications. We observe AWARE
performance comparable to multi-threaded ULA (sparse and dense) with improvements for
Covtype, US Census, and US Census Enc, but a moderate slowdown for Airline and a significant
slowdown for MNIST. LMM also shows a major performance difference when optimizing for
memory versus optimizing for operations, which is especially noticeable in US Census Enc. In
contrast, for datasets with smaller potential for co-coding like Airline, there is no difference.
Figure 3.14(b) shows results on US Census Enc with varying number of rows in the left-hand-
side. CLA performs similar to AWARE at a single row, but when the number of rows increases,
CLA’s performance decreases to the same as ULA due to the lack of native matrix-matrix
support. CLA is worse at utilizing more threads, while AWARE and ULA scale better. For
ULA and AWARE-Mem, there is a change in parallelization strategies after 16 rows. In
contrast, AWARE yields between half and one order of magnitude speedups for all #rows
configurations.

Right Matrix Multiplication (RMM): In contrast to LMM, the right matrix
multiplication creates outputs of overlapping column groups with a shallow copy of the
index structures. Figure 3.15(a) shows the results for all datasets, where we observe AWARE
speedups between 53x to 1,528x because of the deferred aggregation across column groups.
Figure 3.15(b) then shows the scaling with increasing number of columns in the uncompressed
right-hand-side. CLA shows equal performance to uncompressed in the single column case but
scales worse then ULA, again due to the lack of native matrix-matrix multiplication. AWARE’s
RMM exhibits better asymptotic behavior due to its dictionary-centric operations, yielding
speedups >13,000x for 512 columns.

Transpose-Self Matrix Multiplication (TSMM): Figure 3.16(a) and Figure 3.16(b)
show the results of TSMM operations as used for computing PCA, direct-solve linear regression,
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Figure 3.16: Operations Performance Transpose Self Matrix Multiplication.
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Figure 3.17: Operations Performance Sequence.

as well as covariance and correlation matrices. We observe speedups on all datasets except
MNIST, where AWARE yields a substantial slowdown, especially for sparse inputs. The
TSMM performance is largely dependent on the number of column groups, their number of
distinct items, and thus, co-coding decisions. MNIST has a high number of columns, with
high cardinality, and low correlation between columns.

3.4.4 Operation Sequences
Operation Sequences: As final micro benchmark use cases, we evaluate two sequences
of operations. First, scale and shift in Figure 3.17(a) performs a shifting Y = X −
(colSums(X)/nrow(X)) and scaling Z = Y/

√︁
colSums(Y2)/(nrow(Y)− 1). This sequence is a

common normalization step (standard-scaler) of the input data but has the negative side effect of
densifying the input data. AWARE improves performance up to a best case of 15,399x. Second,
we compute the minimum Euclidean distances via D = −2 · (X× t(C)) + t(rowSums(C2)),
followed by d = rowMins(D) (which forces a decompression from overlapping state). Here, D
are the Euclidean distances of each row in X to the centroids C. This expressions is used, for
instance, in K-Means clustering. AWARE shows performance up to 11.3x faster compared to
ULA in all cases except MNIST.

Overlap: Leveraging the overlapping output from RMM without compaction shows signif-
icant improvements in Figure 3.15(a) and Figure 3.17. However, overlapping representations
are most beneficial in chains of RMMs. Table 3.9 shows the end-to-end runtime for a sequence
of 10 RMM of size k = 512, representative for processing 10 fully-connected layers of size 512
with no activation. CLA is slower than ULA in this scenario because it falls back to vector
matrix compressed operations for the first multiplication. AWARE with no overlapping is
slower because the first right multiplication decompresses, but it does show close to ULA
performance. AWARE with overlapping column groups pushes the compressed index structures
through the entire chain of RMMs, improving performance regardless of optimizing for memory
or workload, with a slight advantage to workload.
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Table 3.9: RMM Overlap Sequence (Data: US Census Enc).
I/O Comp RMM Total

SystemML - ULA 0.84 sec — 188.40 sec 190.03 sec
SystemML - CLA 0.88 sec 24.34 sec 374.13 sec 401.27 sec
SystemDS - ULA 0.81 sec — 189.27 sec 190.42 sec
AWARE-No OL 0.76 sec 3.97 sec 189.59 sec 195.51 sec

AWARE-Mem 0.80 sec 8.00 sec 0.38 sec 9.72 sec
AWARE 0.78 sec 3.93 sec 0.42 sec 5.69 sec

Table 3.10: AWARE Workload TOPS (Data: US Census Enc).
ULA AWARE

Op (100×) TOPS Time Est. TOPS TOPS Comp Time
SUM 3.38e+10 2.25 sec 1.29e+05 1.14e+05 4.60 sec 0.08 sec

SUM Dense 1.90e+11 8.96 sec 1.31e+05 1.14e+05 4.65 sec 0.07 sec
RMM-256 2.81e+13 156.97 sec 2.13e+07 1.94e+07 4.74 sec 0.25 sec
LMM-256 4.28e+12 185.69 sec 6.87e+11 7.14e+11 7.22 sec 53.76 sec

TSMM 6.32e+12 111.12 sec 9.83e+11 9.98e+11 7.19 sec 16.91 sec
ScaleShift 7.47e+11 3,216.21 sec 4.08e+05 3.42e+05 4.89 sec 0.36 sec

Euclidean-256 4.80e+13 308.85 sec 8.61e+11 9.04e+11 7.87 sec 78.55 sec

3.4.5 Workload Cost Analysis
Computation Cost: Table 3.10 shows the AWARE workload analysis of different micro
benchmarks on US Census Enc. This experiment shows the estimated Theoretical Operations
(TOPS), calculated from the cost vectors and compression schemes. We compare the estimated
TOPS for uncompressed operations (on the left) with AWARE’s estimated TOPS extracted
from the sample and co-coding decisions, as well as the estimated TOPS after compression (on
the right). We observe that the estimated TOPS from the sample is close to the actual TOPS,
indicating good estimation accuracy and thus, meaningful costs. We also show the compression
time (Comp) and the runtime (Time) for executing 100 repetitions of the given operation
(Op 100×). There are some micro benchmarks that show disproportionate scaling of runtimes
compared to TOPS. With small execution times, moderate discrepancies are expected because
of various unaccounted overheads in both ULA and AWARE. For TSMM and LMM, the
differences are due to output allocation, memory bandwidth limitations, and index structure
lookups. Although the runtime discrepancies are sub-par, we found that our TOPS estimation
provides a good balance of simplicity and reflecting key differences relevant for compression.
More sophisticated cost estimators are, however, interesting future work.

3.4.6 End-to-end Algorithms
We use the following six algorithms to evaluate AWARE with workload-ware compression
on end-to-end ML training: K-Means for clustering; principal component analysis (PCA)
for dimensionality reduction; multinomial (multi-class) logistic regression (MLogReg); Linear
regression (LM) via conjugate gradient (lmCG), and via a direct solve method (lmDS); as
well as l2-regularized support vector machines (L2SVM) for classification. In theory, AWARE
gives equal results to ULA but because of rounding errors in sequences of FP64 operations and
different parallelization strategies—present both, in ULA and AWARE—algorithms naturally
execute with slight variations. Therefore, algorithm parameters are set to ensure an equal
number of iterations and operations. We use the US Census Enc dataset and scale it up
by replication. The replication maintains the statistics of the data, and is not an issue for
distributed execution, where blocks are compressed independently. The local influence is
limited to constant dictionary sizes, and replication is not actively exploited by AWARE.
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Local Execution: Table 3.11 shows the results for local algorithm execution where
data fits in memory. AWARE yields moderate but consistent improvements, or at worst
(e.g. L2SVM, lmDS) comparable performance. Observing improvements on all algorithms
most notably 19% for MLogReg, 47% for K-Means (iterative algorithms), and 29% for PCA
(non-iterative algorithm) is remarkably because this includes online compression. Underlying
reasons are fast compression that is easier to amortize and redundancy-exploiting operations.
The algorithms L2SVM, lmCG, and lmDS all perform very close to ULA.

CLA Comparison: CLA is not included in Table 3.11 because it does not support
scale&shift and therefore would not execute efficiently. For a fair comparison, we use the
L2SVM algorithm from CLA [75] (with minor modifications, e.g. 60 iterations not 100) and
compare different configurations of CLA (in SystemML) and AWARE in Table 3.12. Both
systems read and parse both train and test datasets (in binary), increasing I/O compared to
the other experiments. We observe that CLA compression is slower than AWARE optimizing
for size or compute. CLA does not outperform ULA in SystemML in local settings because
the compression is not amortized. In contrast, our ULA baseline is 1.9x faster, AWARE-Mem
shows similar performance to CLA, and AWARE improves the relative training time (without
compression and I/O) by 2x over CLA, and 2.3x over ULA, but SystemDS ULA is the fastest
end-to-end. Since CLA mostly focuses on large distributed datasets, we further compare
CLA and AWARE on a larger sparse dataset (256x, which only partly fits in memory of 11
nodes). Table 3.12 (right) shows that SystemML CLA yields a moderate speedup, but AWARE
achieves another 2x over SystemML CLA. At this scale, AWARE optimizes for memory size
and thus, the results AWARE and AWARE-Mem are similar.

Hybrid Execution: In between the local and distributed extremes, there are hybrid
runtime plans, where the sparse input fits into the memory of the driver, but after scale&shift
transformation, the transformed data does not fit in the driver and thus generates distributed
operations. Table 3.13 show the results for replicated versions of US Census Enc (8x-32x). Runs
using distributed operations are marked with D, and local compression times are included
in parenthesis. These in-between scenarios are generally challenging because of evictions,
efficient exchange between local and distributed runtimes, as well as decisions on when to
prefer distributed operations. Most notable is this characteristic in ULA, which is sometimes
faster for larger scales. The variance stems from various instructions execution fit in local
memory, and therefore, more or less instructions are executed distributed. For instance, in
PCA, the number of distributed instructions grows from 16x to 32x to, finally, 128x. Across all
algorithms—except for a few instances—AWARE shows consistent improvements, especially if
we focus on computation time (without the compression time).

Large-scale Execution: Finally, the last two rows (128x) show the primary compression
scenario, where both the sparse input and dense intermediate after transformation do not fit
into local memory and the dense intermediate exceeds aggregate cluster memory. We still
compile hybrid runtime plans but all operations on X (and some derived intermediates) are
distributed. Since the data exceeds aggregate memory, iterative algorithms read in every
iteration more than two thirds of X from evicted partitions. The 128x results refer to our
primary cluster setup but with a different memory configuration (more executors and nodes,

Table 3.11: Workload-awareness on Local End-to-End Algorithms (Data: US Census Enc)
ULA AWARE-Mem AWARE
Time Comp Time Comp Time

K-Means 51.6 sec 4.2 sec 46.2 sec 6.2 sec 27.1 sec
PCA 12.7 sec 4.0 sec 10.4 sec 6.0 sec 9.0 sec

MLogReg 32.0 sec 4.5 sec 32.5 sec 7.2 sec 26.0 sec
lmCG 19.8 sec 5.0 sec 20.7 sec 6.4 sec 18.6 sec
lmDS 15.6 sec 5.7 sec 15.5 sec 6.1 sec 14.3 sec

L2SVM 38.9 sec 6.5 sec 45.2 sec 6.2 sec 36.5 sec
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Table 3.12: L2SVM (without scale&shift, 60 iterations, Data: US Census Enc)
Local (1x) Distributed (256x)

I/O Comp L2SVM Total Total
SystemML - ULA 1.6 sec — 36.7 sec 38.4 sec 5,689.6 sec
SystemML - CLA 1.5 sec 32.8 sec 31.7 sec 66.0 sec 4,722.7 sec
SystemDS - ULA 1.6 sec — 19.3 sec 20.9 sec 2,849.1 sec

AWARE-Mem 1.4 sec 6.0 sec 21.3 sec 28.7 sec 2,300.4 sec
AWARE 1.6 sec 7.9 sec 15.9 sec 25.3 sec 2,294.9 sec

smaller spark.memory.fraction) in order to ensure stable results. For comparison, we also
include previous results from our secondary cluster (128x*) using the same configuration as
hybrid execution, which caused lost executors in some cases. Due to redundancy-exploitation
and good compression ratios—even on tiles (see Table 3.8)—we observe large improvements of
2.8x for K-Means, 2x for MLogReg, 6.6x for lmCG, and 2.8x for L2SVM. In contrast, PCA
and lmDS are non-iterative algorithms. On the secondary cluster, we observed up to 70x
performance gains. The differences in relative improvements are due to faster networking and
OS file system caching of evicted partitions due to more physical memory per node (256 GB
versus 128 GB), which favors uncompressed (ULA) operations.

3.4.7 Hyper-parameter Tuning
Executing a single short ML training algorithm makes it hard to amortize the online compression.
In practice, however, most time is spent in ML pipelines that involve outer loops for enumerating
data augmentation pipelines, feature and model selection, hyper-parameter tuning, and model
debugging. AWARE adapts to such more complex workloads by spending more time on
compression (which is easily amortized) and optimizing for operation performance in the inner
loops. Table 3.14 shows results for a basic GridSearch hyper-parameter tuning of the MLogReg
algorithm. Even for a small number of 3 ·3 ·3 ·5 = 90 hyper-parameter configurations, AWARE
improves the local runtime (including compression) by 3x, which is a promising result for wide
practical applicability.

Table 3.13: End-to-End Algorithms Hybrid Execution [Seconds]
(Data: US Census Enc, D Marks Runs Including Distributed Operations).

K-Means PCA MLogReg
ULA AWARE ULA AWARE ULA AWARE

1x 51.6 (6) 27.1 12.7 (6) 9.4 32.0 (7) 26.0
8x 471.0 (26) 117.8 330.3 (26) 42.6 393.3 (29) 88.2

16x D484.3 (48) 183.9 D76.3 (47) 67.5 D570.3 (58) 144.2
32x D1,491.6 D1,496.3 D70.3 D61.2 D671.5 D629.9

128x D17,819.0 D6,298.0 D137.0 D140.3 D3,502.9 D1,710.6
*128x D33,039.0 D11,616.0 D269.0 D259.0 D50,998.0 D8,599.6

lmCG lmDS L2SVM
ULA AWARE ULA AWARE ULA AWARE

1x 19.8 (6) 18.6 15.6 (6) 14.3 38.9 (6) 36.5
8x 366.2 (26) 60.6 334.4 (29) 51.5 405.2 (26) 115.4

16x D104.4 (44) 91.7 D80.2 (50) 75.8 D252.6 (56) 195.5
32x D264.6 D105.3 D91.5 D70.8 D433.2 D479.4

128x D1,611.4 D242.6 D175.9 D162.4 D5,286.9 D1,904.5
*128x D33,090.0 D469.0 D365.9 D465.0 D74,016.0 D1,060.0
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Table 3.14: GridSearch MLogReg (Data: US Census Enc).
ULA AWARE-Mem AWARE

274.3 sec 238.1 sec 92.6 sec
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Figure 3.18: TensorFlow Comparison (lmCG, US Census Enc).

3.4.8 Comparison with Other Systems
While ULA is the most important baseline—within the same compiler and runtime— we also
compare with TensorFlow (TF) version 2.12. We evaluated both TF and TF-AutoGraph [165],
but report numbers for TF-AutoGraph, which gave 1-5 sec faster execution times on average.
The workload is a simplified version of lmCG on US Census Enc, expressed via TF linear
algebra operations. By default, we use 300 lmCG iterations (instead of 100 in Table 3.11).

Results: Figure 3.18 shows the results in log-scale, where each stack is I/O time, compute
time, and total time (from front to back, as regular stacking is infeasible in log scale). On the
left, we have TF with different value types. Changing from FP64 (double) to FP32 improves
execution time by 21.7%, reducing to FP32 produces infinite sums, rendering the algorithm
invalid. BF16 solves this issue by using different numbers of exponent and mantissa bits, but
it is not well-supported on the CPU, resulting in a 3x slowdown compared to FP64. Using
TF’s sparse representation worsens performance slightly at FP64 precision similarly at FP32.
TF executes the core expression per iteration (of two matrix-vector multiplications) X⊤(X v)
single-threaded because it only uses multi-threaded matrix multiplications with two or more
columns in the right-hand-side matrix. In contrast, our multi-threaded I/O and matrix-vector
multiplications yield speedups of about 13x for ULA and 19.5x for AWARE. Forcing both
single-threaded I/O and operations (St), ULA becomes 38% faster than TF. ULA (with
data size of 1.3 GB) does not saturate the memory bandwidth for this sparse dataset, while
AWARE fits the compressed matrix (49.7 MB) into the 128 MB L3 cache, yielding a 3.3x
speedup over TF-FP64. To summarize, both ULA and AWARE show competitive performance
with single-threaded and are faster with multi-threaded operations, indicating that AWARE’s
improvements could carry over to other ML systems.
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3.5 Summary
In this chapter, we introduced AWARE as a workload-aware, lossless matrix compression
framework with new encoding schemes and compressed operations. Compared to previous
lossless matrix compression, AWARE summarizes the workload characteristics of a linear
algebra program and selects where and how to compress the inputs and intermediates to
minimize total execution time.

Based on a variety of experiments, we draw two major conclusions. First, the
broader spectrum of compression techniques (column groups, fast compression, overlapped
representations) yields runtime improvements even when uncompressed operations fit in
memory and can handle increasingly complex ML pipelines of data preparation, model training,
and debugging. Second, the workload-aware compression planning nicely adapts the compressed
representation for higher compression ratios when needed and otherwise prefers operation
performance. Together, these characteristics yield a compression framework with robust
performance and more general applicability.

The AWARE paper [23] proposed three directions for future work. Pushdown of compression
into data preparation (e.g., feature transformations and data cleaning) [249], we present novel
solutions to compressed preprocessing in Chapter 4. Extensions for federated learning (e.g.,
extended asynchronous compression) [24, 25], for which we present preliminary results in
Chapter 5. Finally, combinations with lossy compression (e.g., bounded loss [121, 151]), that
still to this day is promising future work Chapter 6.
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4
Compressed Transformations

The main parts of this chapter are under submission in BWARE.

Modern machine learning (ML) training comprises more than just selecting and fitting ML
algorithms or neural network architectures as well as their hyper-parameters. Data-centric
ML pipelines extend traditional ML pipelines of feature transformations and model training
by additional pre-processing steps for data validation [206, 95], data cleaning [212], feature
engineering [203], and data augmentation [196, 197, 232, 131] to construct high-quality datasets
with good coverage of the target domain. These pre-processing techniques can substantially
improve model accuracy [131, 212], the main target of most ML pipelines, but also other
equally important measures measures like fairness [203, 219] and robustness [229].

Sources of Redundancy: The iterative nature of finding good data-centric ML pipelines
causes both operational redundancy (e.g., fully or partially repeated pre-processing steps)
[190] as well as data redundancy [23]. Besides natural data redundancy, such as the small
cardinality of categorical features and column correlations, data-centric ML pipelines create
additional redundancy. Examples are the construction of new data points or features, as well
as systematic transformations such as the imputation of missing values by mean or mode and
data cleaning by robust functional dependencies [66]. While beneficial for model quality, the
iterative selection of such data-centric ML pipelines is expensive. Eliminating unnecessary
redundancy through data reorganization is appealing because reorganization overheads can be
amortized.

Lossless Matrix Compression: A common approach for exploiting data redundancy
without quality degradation is lossless compression. First, sparsity exploitation avoids
processing zero values via dedicated data layouts, sparse operators, and even sparsity-exploiting
ML algorithms [251]. Common layouts include compressed sparse rows (CSR), columns (CSC),
or coordinate format (COO) [117, 175, 201, 215, 125]. Second, existing compression techniques
apply lightweight database compression schemes—such as dictionary encoding, run-length
encoding, and offset-list encoding—to numeric matrices and perform linear algebra (LA)
operations, such as matrix multiplications, directly on the compressed representation. Example
frameworks are Compressed Linear Algebra (CLA) [75, 74], Tuple-oriented Compression
(TOC) [147], Grammar-compressed Matrices (GCM) [77], and AWARE [23] (see Figure 4.1,
top). AWARE creates compressed matrices (C) in a workload-aware manner by (1) extracting a
workload summary of the program at compile-time, as well as (2) workload-aware compression
and compression-aware recompilation at runtime. Existing work struggles to efficiently
rediscover structural data redundancy in data-centric ML.
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Figure 4.1: BWARE Framework Overview.

A Case for Compressed
Pre-processing: Feature trans-
formations encode categorical and
numerical features into numerical
matrices. This conversion is a rich
source of information about struc-
tural data redundancy. For exam-
ple, one-hot encoding a categorical
feature requires determining the
dictionary of d distinct items and
creating d perfectly correlated binary features. Transformations like binning and feature
hashing represent user-defined, lossy decisions which give upper bounds for code word sizes
as well. Furthermore, data-centric ML pipelines iteratively evaluate additional features and
different transformations. Therefore, we make a case for pushing compression through feature
transformations and feature engineering to the sources, e.g., storage. Holistic support requires
(1) compressing the input frames in a form amenable to compressed feature transformations,
(2) supporting compressed I/O, as well as (3) compressed feature engineering and feature
transformations. Since data and workload characteristics of enumerated ML pipelines may
differ, there is a need for morphing [101, 62, 58] compressed intermediate matrices into
workload-optimized representations [23].

Contributions: In this chapter, we introduce BWARE (see Figure 4.1, bottom) as a
holistic, lossless compression framework for data-centric ML pipelines. Our main contributions
are:

• A lightweight frame compression scheme with dictionary encodings, enabling compressed
feature transformations on heterogeneous data (Section 4.1).

• A morphing technique for workload-aware tuning of compressed representations
(Section 4.2).

• Parallel and distributed I/O for compressed blocks without decompression (Section 4.3).

• An optimizing compiler injecting morphing instructions into LA programs (Section 4.4).

• An experimental evaluation that studies the impact of compressed I/O, feature engineer-
ing, feature transformations, and training in data-centric ML pipelines (Section 4.5).

4.1 Heterogeneous Frame Compression
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...
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...
0
1
1
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...
n
2
2
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1...
0
1
0

Cframe

Figure 4.2: The Compressed Frame Format.

This section describes BWARE’s frame
compression, compressed feature transfor-
mations to matrices, and compressed feature
engineering.

4.1.1 Compressed Frame Design
Uncompressed frames are tables stored in
columnar arrays where each column can
contain different value types. Figure 4.2
shows our Cframes using a dense dictionary compression (DDC) scheme per column. Each
DDC column consists of a mapping array, length = #rows, on the left and a dictionary
array, length = di, on the right. di is d in column i. The map contains value positions in the
dictionary.

Compressed Size: The compressed size depends on the number of distinct values d,
value type, and number of rows. The mapping supports 0 or 1 Bit and 1-, 2-, 3-, or 4 Byte
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4.1 Heterogeneous Frame Compression

encodings per value #B (supporting up to 1, 2, 256, 64K, 16M, and 2G distinct values). If di

is large, the dictionary allocation becomes too costly compared to the original value types, and
we fall back to uncompressed arrays from the input frames columns. We compress boolean
columns, which increases the size of the overall compressed format but can be leveraged in
BWARE’s feature transformations and feature engineering.

Type Conversion: Type conversion improves allocations using specialized value types.
We detect the value type on a sample of the data and fuse conversion and column compression.
In case of casting errors, we re-detect a guaranteed correct value type and convert the column
to the newly detected type. We support string, int, character, boolean, hex code, and float
types of different precision. The schema detection and application are critical because our
system defaults to reading frames as strings unless a schema is provided on the initial read.
For example, a hash encoded as a hex "bcdef123" but allocated as a string can be very costly.

Simple Compression: We do not co-code columns because many feature transformations
use unique dictionaries for individual columns, and different columns can contain different
value types. Subsequent workload-aware morphing (Section 4.2) of the compressed format
anyway tunes the final matrix compression with support of a wide variety of different encoding
schemes. The proposed transformation techniques would also work with other dictionary-based
compression techniques (e.g., RLE [3], SDC [23], and OLE [74]). Furthermore, we think it
could be interesting to use it with GLA [77] and TOC [147] based column groups, all of which
we leave for future work.

Compression: We fuse type detection, type conversion, and DDC compression. For
each column: (1) We detect value types on a sample and try to apply the conversion while
compressing. If the detected value type is invalid for the entire column, we revert to a full
pass of the column to guarantee type detection. (2) To compress, we allocate a mapping that
can encode as many unique IDs as rows. (3) Then, we iterate through all column rows and
build a hashmap to encode unique column values with contiguously increasing IDs. All values
IDs are stored in the mapping. (4) We pack the mapping into an improved format according
to the di elements encountered to improve #B. (5) We allocate a dictionary array, D, and fill
it by looping through the hashmap’s key-value pairs < ki, vi > and assign D[vi] = ki. We do
not compress the column if the hashmap grows too large compared to the #rows and detected
value type. Even without DDC, type detection and conversion can still improve memory usage.

Parallelization: We naïvely parallelize over all input columns because the compressed
frame format independently compresses columns. However, some datasets contain few columns
and many rows, and parallelizing only over columns does not fully utilize the available degree
of parallelism. Therefore, each column thread further parallelizes the parsing of value types
from strings—which can be costly (e.g., String to FP64 [141])—over row segments.

4.1.2 Compressed Feature Transformations

Table 4.1: Transform Encode Types.
Name OH C-In&Out

Bin ✓ ✓
Hash ✓ ✓
Pass ✓ ✓

Recode ✓ ✓
Word Emb ✓

Transform-encode encodes a heterogeneous frame into
a homogeneous matrix by applying dedicated feature
transformations (built-in function transformencode()).
The operation produces two outputs: A matrix and a
metadata frame to apply the same transformations to
other frames. We support the transformations shown
in Table 4.1. Many other numeric transformations
can be subsequently performed in linear algebra (e.g.,
normalization and scaling).

Lossless: We support two lossless transformations: Pass returns the same values as
the input cast to double. Pass requires numeric inputs. Recode encodes input values into
contiguous integers for each unique value encountered (similar to DDC encoding, just throwing
away the dictionary).
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4. Compressed Transformations

Lossy: Similarly, there are two lossy transformations: Bin short for Binning, constructs
n buckets to encode the values into. The bins use equi-height or equi-width quantization.
Equi-height constructs buckets with similar frequency of data points by calculating quantile
boundaries. Equi-width extracts the minimum and maximum value and constructs buckets of
equal ranges. The values returned from binning are bin IDs. Finally, hash hashes each value
and returns the hashed value modulo the maximum number of buckets to yield a bin ID.

One-hot Encoding: One-hot encoding (OH )—which is also called dummy coding
(with subtle differences)—encodes contiguous integer values i into one-hot sparse vector
representations with one set in cell i. Other transformations (which return integers) can use
OH on top as specified in Table 4.1.

Word Embeddings: Encoding words into semantic-preserving numeric vectors is done via
word embeddings, which is a sequence of recoding, one-hot encoding, and matrix multiplication
with an embedding matrix. v denotes the size of each embedding vector. The matrix
multiplication uses a selection matrix (details in Section 3.2.6.5), constructed via a contingency
table on the recoded output.

Frame CFrame Matrix CMatrix

Figure 4.3: Transform Encode Sequences.

Compression Sequences: Figure 4.3 shows
different transformation sequences. The abbre-
viations F-CF is frame compression, and M-CM
stands for matrix compression.

Frame to Matrix (F-M-CM): The already
existing baseline approach is to first transform-
encode an uncompressed frame to an uncom-
pressed matrix (F-M). Subsequently, the matrix
is compressed (M-CM) with existing lossless matrix compression techniques [23, 147, 74, 77].
However, the separate matrix compression has to extract statistics from the intermediate
matrix again, many similar to the F-M transformation’s statistics.

Frame to Compressed Matrix (F-CM): The compression feature transformations are:

• Recoding: Uses two passes: (1) construct a hashmap of unique values to continuous
IDs, and (2) apply the assigned IDs. Finally, allocate a dictionary using the HashMap
keys as values and values as offsets. +Dummy: use an identity matrix as a dictionary.

• Pass-through: Takes a sample if uncompressed and verifies compressibility. If the
column is incompressible, return an uncompressed column group. Otherwise, proceed as
recode, but use the hashmap keys for the dictionary values.

• Hashing: Hashing does not need a hashmap. Instead, we directly allocate a dictionary
similar to the recode of k values and hash each tuple directly into the mapping. The
hashing method may not use all buckets, potentially creating unnecessary entries in the
compressed dictionary. +Dummy: Use an identity matrix of k rows and columns.

• Bin: Calculate the bin of each value and put it into the mapping. The dictionary
is incrementing integers until ∆. +Dummy: Use an identity matrix of ∆ rows and
columns.

Compressed Frame to Compressed Matrix (CF-CM): Compressed frame inputs
offer multiple optimization opportunities. First, we skip constructing hashmaps by directly
utilizing the dictionaries of a compressed frame. Second, we reuse the index structures (the
map of DDC, but other structures for other compressions) allocated from the Cframe for the
Cmatrix. Compression is usually dominated by creating index structures because the ratio of
distinct values is commonly small. Reusing the index structures makes the transformation
scale in the number of distinct values rather than the number of rows. The reusing approach
is, however, only applicable if we use lossless transformations because lossy transformations
have to reallocate or re-map their index structures.
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Figure 4.4: Recode and Dummy-code Two Columns.

Example: Figure 4.4 shows recoding and one-hot-encoding a frame of two columns. The
uncompressed and compressed matrix results are shown in the middle and on the right. The
transformation returns di matrix columns for each input column. The unique values are
incrementally mapped to encoded values. The mapping from row indexes to dictionary entries
is the value’s recoded IDs. The dictionary is a virtual identity matrix (stored in a single integer).
Each column group contains a column range with a start and end index. The mapping size
depends on the number of rows and di. Assuming |X| =1,000 and d1 = 200, the left mapping
uses 1 B/row and the right column uses 1 b/row. The Cmatrix then requires 1032 + 176 = 1208
B plus object/pointer overheads. If the input frame is compressed, like in Figure 4.2, the
output can point to the input mapping of the compressed frame column. In such cases, the
time complexity is O(1) instead of O(n). Furthermore, in such cases with constant output, the
allocation becomes constant with only 20 B of pointers.
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Figure 4.5: Compressed Linear Algebra Word Embedding.

Compressed Word Em-
bedding: Figure 4.5 shows
how we perform a compressed
word embedding for a single
column input in O(1), only
requiring shallow copies of (i.e.,
pointers to) already allocated
intermediates. Since the em-
bedding is a right matrix mul-
tiply and the intermediate compressed matrix’s dictionary is an identity matrix, the embedding
multiplication constructs a new compressed result with a pointer to the full embedding matrix,
reused as the dictionary of the dictionary encoding.

Intermediate Sizes: Table 4.2 shows the sizes formulas of outputs. F-M is the
uncompressed standard transformation, while F-CM and CF-CM produce compressed
matrices. The first half of the table is without one-hot encoding. The one-hot F-M size
assumes CSR output. Otherwise, dense representations require 8|X|di. ’constant’ means the
compressed input index structure is used directly in the output.

Table 4.2: Transform-Encode Column Asymptotic Size.

F-M F-CM CF-CM
Recode & Pass 8|X| #B|X|+ 8di constant

Bin & Hash 8|X| #B|X|+ 8∆ #B|X|+ 8∆
With One-Hot / Dummy-Coding

Recode & Pass 12|X| #B|X| constant
Bin & Hash 12|X| #B|X| #B|X|

Word Embed (8v + 12)|X| #B|X| constant
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Figure 4.6: Extending Features in a Co-coded Column Group.

4.1.3 Compressed Feature Engineering
Feature engineering constructs or modifies features to improve the accuracy of ML models.

Modified Features: We define feature modifications as element-wise operations that
change all instances of a feature equally. A typical operation is normalization. Normalization
has multiple forms such as scale and shift or min-max scaling. Normalization is needed for
well-behaved training of ML algorithms. Elementwise operations are supported in compressed
space by prior work [77, 147, 23, 74]. In essence, we similarly perform most of the modifications
with time complexity in the number of distinct items, O(di) for each column group.

Additional Features: One can add features by joining on keys or constructing new
from existing features. An example is to expand X with X′ = cbind(X, X2), where we
concatenate X and its squared representation. Such features allow simple linear models to take
non-linearities into account, known as the kernel trick [15]. The append, however, requires
allocating the full extended matrix. In contrast, BWARE combines new column groups with
minimal additional allocations. Figure 4.6 shows the modification on a DDC encoding (but we
support this operation for multiple compressed encoding types). The first step performs the
scalar power operation. Scalar power is a dictionary-only operation, reducing the allocation
to a new dictionary and maintaining pointers back to the original input mapping. When
performing the column bind (cbind) operation, we detect that both indexes point to the same
mapping, which indicates perfect correlation, and thus allows the direct combination into a
co-coded column group. Similar exploitation strategies exist when subsets of columns are
modified and appended. Furthermore, the compressed append can add multiple non-linearities
at the same time X′′ = cbind(X, X2, log(X),

√
X).

Performance: |X|/di defines the potential speedup of compressed feature engineering of
individual columns because the new features have a perfect correlation with the original features
and can share index structures. Exploiting the co-coding removes redundant compression
analysis of the augmented matrices. Many compressed operations benefit from extensive
co-coding. For example, left matrix multiplication (LMM), with compressed right and
uncompressed left inputs, benefits because pre-aggregation is independent of the number
of co-coded columns.

4.2 Morphing
Matrix
CMatrix

or
Input Classify 0 1 2 3 4

Extract column statistics

Grouping 0 1,3 2,4
Co-code Statistics

Compress or Morph

sample

Morphing/Compression Plan

0 1,3 2,4

Compressed
Output

Figure 4.7: Morphing or Compression Sequence.

Our novel morphing-based
compression transforms un-
compressed dense or sparse, as
well as compressed matrices,
into tuned compressed matrix
representations. The morph-
ing sequence is shown in Figure 4.7. First, for uncompressed inputs, we extract column
statistics from the input and group columns according to these statistics and workload. Second,
in the case of a compressed matrix input, we directly reuse the statistics of pre-existing
co-coded columns and skip unnecessary exploration. The result is a morphing/compression
plan that contains a recipe for which columns to merge and what type of encoding to use.
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Algorithm 7 Morphing DDC Combine Algorithm.
Require: DDCMap: I1, I2, DDCDict: D1, D2, DDCCols: C1, C2

M← HashMap, IR ← constructIndex(len(I1))
for i1, i2, iR in I1, I2, IR do

iR ←M.putIfAbsent(i1 + i2|D1|, M.size())
end for
DR ← constructDictionary(size(M), len(C1) + len(C2)))
for k, v in M do

DR[v]← combine(D1.get(k%|D1|), D2.get(k/|D1|))
end for
return DDCColGroup(IR, DR, combine(C1, C2))
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Figure 4.8: Combining
Two DDC Groups

Morphed Combining of Compressed Columns: To avoid decompression, we designed
a co-coding algorithm that takes two encoded columns and returns a compressed co-coded
column. We support combining various input column encodings. Algorithm 7 and Figure 4.8
show the combination of DDC column groups. The two column groups to combine are on
the left, and the combined output is on the right. A naïve combination would produce the
cartesian product of the dictionaries. Instead, our solution materializes only dictionary tuples
that co-appear in the index structures. The cbind example from the previous section is a form
of combining where the dictionary’s number of unique tuples does not grow. Each cell value in
a naïve mapping can be calculated via iR = i1 + i2d1. Instead of populating the combined
index with the naïve index values, we indirectly populate a hashmap to assign the combined
index. Each combined dictionary tuple can then be looked up through the hashmap. The
asymptotic runtime of creating such co-coded column groups is O(|X|+ dR), where typically
dR ≪ |X|.

Morphing a Column Encoding: Combined column groups might not be in the correct
encoding per the morphing plan. Therefore, the final step is to morph individual groups into
other encoding types. Since most of our encodings are variations of dictionary encoding, the
conversion is simple. We try to change encodings while reusing intermediates as much as
possible. In practice, changing encodings typically only changes the index structure while
keeping dictionaries.

Fallback Morphing Execution: Sometimes, the set of column groups selected for
co-coding use heterogeneous encoding schemes, making it hard to have specialized combining
algorithms for all. The fallback solution—in case specialized kernels are non-existent for
combinations of encodings—is to decompress the selected morphing columns into a temporary
matrix followed by a standard compression from scratch. The fallback case is often avoided
because the transformencode currently only uses DDC. This fallback allocates a potentially
expensive uncompressed matrix of size #row and #columns to combine. We have specialized
methods for most permutations of SDC, DDC, CONST, EMPTY and Uncompressed column
groups, avoiding the fallback.

4.3 Compressed I/O
Prior work on workload-aware lossless matrix compression used online compression after local
or distributed reads, where—at least for local compression—the entire uncompressed input
matrix needed to fit in memory. This approach restricts the size of compressible matrices
and redundantly compresses the input matrix for every program execution. To address these
limitations, we extended our BWARE compression framework to read and write compressed
blocks and support continuous compression of streams (collections) of blocks.
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4.3.1 Compressed Data Layout
The on-disk format is a tiled format allowing distributed reads of collections of pairs of index
and matrix blocks. Figure 4.9 shows the structure. The format excels in reading from local
and distributed (HDFS) storage since multiple partitions can be read in parallel [65]. Reading
and writing the matrix/frame formats have unique challenges to avoid decompression. When
reading, we combine multiple, potentially differently compressed, blocks. When writing, we
have to tile our index structures according to the block size selected. For both read and write,
we support local and distributed operations.

Partitions & Tiles: Partitions hold multiple tiles and are written to individual files.
The minimum number of tiles in each partition is determined by the partition sizes. We use
minimum partition sizes of 128MB in HDFS (default block size) and 16KB in local (largest
common disk block size). Partitions are allowed to grow larger than the minimum size.

Compressed Disk Format: The compressed format on disk can be seen in Figure 4.10.
We split the compressed index structures and the dictionaries into separate partition files. For
local writes, we write the dictionaries only once (into an optional dictionary file) and rely on
the read logic to combine the indexes and dictionaries again (e.g., via Spark broadcast for
distributed reads). However, blocks compressed independently in distributed operations save
index structure and dictionary together similarly to the uncompressed formats. The difference
in behavior avoids collecting the distributed compressed representations to deduplicate the
dictionaries but reduces the compression ratio because of duplicate dictionaries.

4.3.2 Reading and Writing Compressed Data
Local Reading: When reading a compressed matrix to local memory, we combine all the
blocks into one consolidated columnar compression scheme. Such a read happens when reading a
compressed input from a disk but is also applicable when collecting outputs of Spark operations.
The simplest case of combining is if all blocks in a column use the same compression scheme.
In this case, only one of the dictionaries is collected, and each index structure can be combined
directly. In other cases, it is more complicated and might lead to decompression or morphing of
individual sub-blocks and re-compression. Morphing enables changing the compression scheme
of sub-blocks into the consolidated scheme without decompression. However, selected group
encodings have methods to combine directly with other types, such as CONST, EMPTY and DDC.

Distributed Reading: To read a compressed matrix in Spark, we construct a sequence
of RDD (resilient distributed dataset) operations that lazily evaluate and materialize the
compressed sub-blocks. If no separate dictionary file exists, all tiles should be self-contained
(with index and dictionaries). In that case, we return a PairRDD of indexes and blocks. If
there is a dictionary file, we first read the index structures into PairRDDs of matrix indexes
and compressed index blocks and another of column index and dictionary blocks. We then join
the dictionaries with the index structures to construct the combined compressed blocks. The
result is a collection of self-contained compressed blocks. If the dictionaries grow above the
tile size, then each distributed compressed block would be larger than uncompressed blocks.
This does not happen in practice because before writing any compressed block (or sub-block),
we check if an uncompressed dense or sparse version is smaller and use the smallest.
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Algorithm 8 Serialized DDC Fused Update And Encode.
Require: Matrix : X, Scheme: S; C ← SCols: , M ← SMap, D ← SDict

ms ←M.size() ▷ HashMap size before updates
IR ← constructIndex(rows(X)) ▷ Allocate output index
for r in X.rows() do

t← extractTuple(r, X, C) ▷ Extract tuple from row
i←M.putIfAbsent(t, M.size()) ▷ Increment size on new
if IR.notValid(i) then Fail ▷ Check support of value
else IR[r]← i
end if

end for
if ms < M.size() then D ← updateDict(M, D)
end if
return DDCColGroup(IR, D, C)

Update & Encode: To support large matrices or streaming use cases (e.g., continuous
data collection), we can apply a compression plan on a stream of continuously arriving matrix
blocks. The technique allows dynamic updates to a scheme to compress matrices without
analysis, and each scheme can be applied in parallel. Algorithm 8 shows the DDC encoding
variant (we support seven encodings in total). Given a compression scheme (determined from
a sample), we first try to use a fused compression kernel that performs one pass over the input
block. We use a one-pass algorithm because we are usually memory-bandwidth-bound. We
start by allocating the output index structure and remembering the starting number of distinct
values. The loop extracts the value tuples from the matrix depending on what columns are
encoded. Then, we probe the map. If the tuple is not contained, we assign a new incremented
ID otherwise, we use an existing ID. If we encounter many new distinct tuples, the index
structure might be unable to encode them. In such cases, we abort and fall back to a two-pass
algorithm that first updates and then encodes in two loops. If the map size is equal to the
beginning, no new values are encountered, and we reuse the previous materialized dictionary.
Otherwise, we update the dictionary. A benefit of this scheme is that all previously encoded
blocks can use the latest dictionary for computations.

4.4 Compiler and Runtime Integration

Fx = read($1)
Y = read($2)
parfor (t in transformation_specs ){

Mx = transformencode (Fx , t)
parfor (a in augment_specs ){

Ax = augment (Mx , a)
print(lmCG(Ax , Y))

}
}

1

2

3

4

Figure 4.11: Data-Centric ML Pipeline Pseudo-code

Data-centric ML pipelines transform
data through multiple stages from
disk over pre-processing and augmen-
tation to ML algorithms. Figure 4.11
shows a pipeline containing nested
loops for finding the optimal pre-
processing primitives. The stages
comprise reading 1 , a loop for dif-
ferent feature transformations specs
t 2 , a loop for augmentation strate-
gies a 3 , and the training loop of
an algorithm 4 , exemplified with a
conjugate-gradient linear regression. There is potential to exploit redundancy via the previously
presented techniques. However, adding compression to the stages would require hand-tuning the
individual compound techniques based on the transformations, augmentations, and algorithms
used. Instead, we propose an optimizing compiler and runtime that dynamically introduces
the compression primitives in given linear algebra programs.

Compiler: We decide, at compile time, where to inject compression and morphing
instructions. User-defined linear algebra programs, such as Figure 4.11, are first compiled into
a hierarchy of statement blocks (for conditional control flow and function calls) containing
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Figure 4.12: BWARE: Data-Centric ML Pipeline with Compiler Introduced Compression

directed acyclic graphs (DAG) of high-level operations (HOPs) per last-level statement block.
Each HOP is compiled into one or more low-level operators (LOPs). We detect HOPs with
morphing potential by considered operations such as read and transformencode, but also
operations like rounding (e.g., floor) or comparisons (e.g., <=), which produce integer and
boolean outputs. For each candidate HOP, we then construct a workload vector of affected,
data-dependent operations summarizing the workload costs of the respective intermediate. If
the workload summary indicates potential for improvement, the HOP is marked, appending a
morphing LOP to its compiled sequence of LOPs.

Runtime: The runtime morphing has access to the compile-time workload vectors, allowing
us to adapt the matrix to the workload. Since morphing supports compressed and uncompressed
inputs, we handle unforeseen circumstances (e.g., after conditional data modification), adjusting
the compression while still adhering to subsequent workload and data characteristics.

Example: Figure 4.12 shows the compiled execution plan for the script from Figure 4.11. In
stage 1 , the compiler injects frame compression depending on the input file it either compresses
an uncompressed input frame or directly reads a Cframe. The Cframe is transformed into a
matrix, where index structures can be reused, and most transformation costs are O(1). For
stage 2 the compiler introduces a morphing instruction to optimize the compressed format
according to the workload extracted from the linear algebra program and used operations in
stages 3 & 4 (we use DSL-based primitives for augmentation and algorithms). For some
operations, the optimizer also introduces morphing into the algorithms 4 .

4.5 Experiments
Our experiments study various properties of workload-aware compression. We start with
the sizes and compression speed of frames. Then, we compare lossless and lossy approaches
to feature transformations. We show how our solution scales evaluating polynomial feature
engineering performance and highlight a word embedding NLP example with a fully connected
layer. Further experiments show end-to-end ML algorithms using both lossless and lossy
feature engineering. We also evaluate a data-centric ML pipeline that iterates through multiple
feature transformations. Finally, we compare the transformation performance to other systems.

4.5.1 Experimental Setting
HW/SW Setup: All experiments are conducted on a server with two Intel Xeon Gold 6338
2.0-3.2 GHz (64 cores, 128 threads), 1 TB 3200 MHz DDR4 RAM (peak performance is 6.55
TFLOP/s), 16× SATA SSDs in RAID 0 for data, and an Intel Optane SSD DC P5800X for
programs, scripts, and local evictions (in case live variables exceed the buffer pool size). Our
software stack comprises Java 17.0.11, SystemDS 3.3.0*, Hadoop 3.3.6, and Spark 3.5.0.

Baselines: As baselines, we utilize SystemDS uncompressed I/O and operations (ULA),
and compare to AWARE [23] for lossless matrix compression, as well as ML systems (TensorFlow
2.15 [158], SKLearn 1.4.1 [185, 45]), data management systems (Pandas 2.1 [224], Polars
0.20 [233]), and generic compression systems (ZStd 1.5.5-4 [76], Snappy 1.1.10.3 [90]).

Datasets We use multiple datasets, each having different data types and transformation
requirements. Adult [26] (also called Census) is a sample from the person records in a 1990 U.S.
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Table 4.3: Used Datasets and ML Tasks.
Dataset Name # Rows # Cols Categorical Numeric Task

Adult [26] 32,561 15 9 6 Binary
CatInDat [198, 236] 900,000 24 16 8 Binary

Criteo Day 0 [118] 195,841,983 39 25 14 Binary
Crypto [228] 24,236,806 10 1 9 Regression
KDD98 [182] 96,367 481 135 334 Regression

Santander [191] 200,000 201 0 201 Binary
HomeCredit [166] 307,511 121 16 105 Binary

Salaries [19] 397 6 3 3 Binary
AMiner V16 [222] ≈4,000,000 1,000 1,000 0 Word Embed

census. CatInDat [198, 236] (Cat) is a synthetic dataset from Kaggle that contains categorical
features for predicting cat ownership, we combined the two competition datasets. Criteo [118] is
a dataset of millions of display advertisements for predicting which ads were clicked. Criteo10M
is the first 10 million rows from Criteo. Crypto [228] is a Google competition dataset for time
series forecasting of crypto-currencies. KDD98 [182] is a knowledge discovery competition
dataset from 1998. Salaries [19] is a small dataset containing the salaries of professors in a
U.S. college. Santander [191] is another Kaggle competition to predict customer transactions.
HomeCredit [166] predicts how likely each applicant is to repay a loan. AMiner V16 [222]
contains ≈4 million abstracts from various conferences. We preprocessed AMiner by removing
non-English abstracts, equations, and symbols. The datasets are summarized in Table 4.3.
Categorical and numeric is the number of respective feature types. The tasks are split into
regression, binary classification, and word embedding tasks.

4.5.2 Frame Compression and I/O
We first evaluate the sizes of compressed frames and I/O performance in Figure 4.13.

In-memory Size: Figure 4.13’s top row shows three different measures of the in-memory
compressed frame. First, String represents a frame with the default generic string values
without exploiting the values types of the columns. Second, Detect automatically detects
the value types. Detect achieves in-memory size reductions from 1.5x to 18x across the
datasets compared to String. However, BWARE’s compressed frame improves it by 19x to 65x.
Comparing BWARE with Detect shows additional improvements of 1.09x to 43x. A low ratio
relative to Detect occurs in cases with continuous values and high cardinality, such as Salaries
or Crypto. The results show that BWARE can keep larger frames using less memory and
guarantees (except for boolean data) less than or equal sizes to Detect. Interestingly, BWARE
reduces allocation even in the tiny Salaries dataset.

On-disk Size: The second row in Figure 4.13 shows the size of the datasets on disk. The
first column in each figure shows the original allocations (CSV files). The second column
contains our serialized detected frame saved in HDFS sequence files, with tiles of 16K rows.
We see that there can be an overhead in storing the tiles. The worst case is KDD98 going from
112MB CSV to 171MB, a 1.5x increase. If HDFS’s block-wise compression is enabled, then using
Snappy improves KDD98’s binary files to 63MB, while ZStd is better with 36MB. Enabling
our compressed writers in BWARE, we get 45MB, and ZStd’s nested compression 24MB, an
on-disk reduction of 4.6x. The general conclusion is that BWARE performs almost equally to
other compression frameworks for individual block compression, and we can recursively stack
compression schemes for improvements.

Write/Read Time: The third row in Figure 4.13 shows the execution time to write
the different formats. The writing time includes schema detection, schema application, and
compression, if applicable. We see a moderate overhead for compression, but it is comparable
to other compressors. The last row in Figure 4.13 shows the reading performance from CSV
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Figure 4.13: Frame Compression.

files as well as uncompressed and compressed binary files. We see that reading text formats
should be avoided, but sometimes, it is competitive with our binary format (e.g., in Cat). The
BWARE reader performs similarly or better than the uncompressed binary reader, even in
incompressible cases like Crypto and Santander. The exception is the tiny Salaries dataset,
where the binary reader is the fastest.

4.5.3 Compressed Feature Transformations
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Figure 4.14: Lossless Transform-Encode.

Next, we evaluate feature transforma-
tions. We start with lossless, followed by
lossy encodings.

Lossless Encoding: We one-hot-
encode all categorical and pass-through
numeric features in a lossless encod-
ing. With this scheme, we copy over
the values of Crypto and Salaries be-
cause all values are numeric, while most
columns in Cat and Criteo are one-hot-
encoded. Figure 4.14 shows the perfor-
mance. The rows include (1) the matrix’s
last size in memory, (2) the saved size
on disk, and (3) the execution time of
transformencode plus compression or
morphing. AWARE and BWARE use less memory than a default sparse or dense matrix, even
in the incompressible Crypto and Santander. AWARE’s allocation is close but consistently
smaller than BWARE. However, BWARE reuses the index structure from the compressed
frame arrays in cases with a 1-to-1 mapping from the frame column’s values. We further see
that BWARE’s on-disk representation is slightly worse than AWARE (which we extended to
use BWARE’s I/O operations).

Lossless Time: String encodes string types as input, while Binary (F-M) encodes using
the detected types. AWARE (F-M-CM) encodes detected types followed by compression from
scratch, and BWARE (F-CM) uses compressed transform encoding. BWARE is faster than
the other solutions, with exceptions in the incompressible cases of Crypto and Santander.
AWARE’s compression of Criteo shows what happens when the rediscovering of column
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correlations dominates. In essence, Criteo is encoded into millions of perfectly correlated
columns because of the one-hot encoding. AWARE tries to discover the correlation and starts
co-coding. However, due to millions of columns with perfect correlation and each co-coding
candidate taking time to verify, we timeout the runs at 1000 seconds.
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Figure 4.15: Lossy Transform-Encode Size and Time.

Lossy Encoding: Figure 4.15
shows results with different ∆ (#bins)
for numeric ranges or categorical hash
buckets on the x-axis. BWARE without
morphing uses the DDC compression
of the compressed transformencode,
while BWARE with morphing addition-
ally morphs the compression scheme
after the transformation. AWARE,
BWARE, and BWARE+Morphing use
less space than the uncompressed base-
line. AWARE returns better-compressed
results than BWARE because it has a
larger exploration space, while BWARE
is more optimized for speed and reuse.
When writing to disk, we always use
morphing to improve the allocation. We observe that the morphed allocation is close to
AWARE’s saved format. The results show that BWARE is faster across all datasets while
being on par for Santander. BWARE yields improvements of 2x to 20x over AWARE and 1x
to 5x over the baseline SystemDS.

100
101
102
103
104

Ti
m

e 
[m

s]

100k 1m 10m 100m

Uncompressed Compressed

Figure 4.16: Compressed Input Frames.

Encoding Time Breakdown: All experi-
ments, so far, used uncompressed frame inputs.
If the input frame’s columns are compressed, the
asymptotic runtime changes to constant for some
transformations. Figure 4.16 shows the paral-
lel lossless transform encode time of individual
columns of Criteo for different numbers of rows
with columns sorted by compressed execution time.
Some columns in Criteo are compressed, while others have many distinct values and are
uncompressed. The constant encoding time can be seen in the plateau of the first 50% of the
columns in the plot. The constant groups take ~40ms, except for 10m where it consistently is
~100ms. The following 25% have to change their compressed index structures, and the final
25% are uncompressed. The two fast columns in uncompressed are boolean columns. Since our
hardware setup has a high degree of parallelism, the total encoding time is equal to the tallest
bar, while a single-threaded execution is equal to the integral of the colored areas. Therefore,
the end-to-end difference between F-CM and CF-CM is small if CF contains incompressible
columns.

4.5.4 Compressed Word Embeddings
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Figure 4.17: Compressed Word Embedding

Figure 4.17 shows the performance of en-
coding already tokenized abstracts from
DBLP [222], capped at a maximum of
1,000 tokens. All plots show the total
execution time of 10 repetitions of perform-
ing word embedding with word2vec [161]
embeddings trained on Wikipedia. The
first row represents word embedding only,
while the second row adds a fully connected
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neural network layer with ReLu activation
on the embedded outputs. The columns show increasing numbers of unique tokens (d) allowed,
starting at d = 1k and increasing to 100k. The x-axis on all plots is the number of abstracts
encoded, while the y-axis is execution time. We observe that ULA is slower at embedding
but as fast as TensorFlow once the neural network layer is added. ULA catches up because
of efficient sparse linear algebra not leveraged in TensorFlow. TensorFlow and ULA are not
affected by increasing d, while BWARE is. BWARE shows the best performance in all cases
in embedding time and scales further than the other implementations. When adding the
neural network layer, the performance is slower in cases where the number of abstracts is lower
than d. However, once the number of abstracts is larger than d, BWARE asymptotically and
empirically outperforms all the other implementations.

4.5.5 ML Algorithm Performance
To quantify BWARE’s effect, we evaluate a conjugate gradient linear model training with
different lossless, lossy, and feature engineering pipelines showcasing individual effects BWARE
has on the combined performance of end-to-end ML pipelines.
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Figure 4.18: LM Conjugate Gradient Baseline.

Lossless: Figure 4.18 shows the
performance of training a linear regres-
sion conjugate gradient method with L2
regularization. The max iterations are
set to min(#col, 1000). The algorithms
are sparse-safe, allowing the baseline
to take full advantage of sparse linear
algebra. We observe a small slowdown
using BWARE in some of the cases of 22% in KDD and 25% in Home. However, Criteo
(with 10 million rows) improves by 2x from 1,368 to 681 seconds. Incompressible cases are
expected to have a small overhead in analysis and compression, but we observe that both
the incompressible cases of Crypto and Santander keep the same execution time because the
compressed transformations fall back to uncompressed representations. We do not show the
accuracy of the models because the results of both solutions are the same. However, as an
example, the method scores 78.9 AUC for Cat on Kaggle with such a simple model, while the
top score is 80% [198].
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Figure 4.19: LM Conjugate Gradient Loss w/ Increasing ∆.

Lossy: Figure 4.19 shows
the results when controlling
the number of distinct values
through lossy transformations.
The Crypto dataset is almost
purely numeric and a dense
dataset. When varying ∆, we
observe baseline performance
similar to the lossless solution. The performance is expected since there is no benefit from
reducing the number of unique values in uncompressed linear algebra. BWARE is able to
exploit the reduced number of unique values, with a slight increase in run times when ∆
increases. There are cases that do not benefit, such as KDD, where only extreme values of ∆
yield performance improvements. Lower ∆ generally makes models fit worse, but not always,
and sometimes lower ∆ can have a positive regularization effect that gives better accuracies.
For KDD, the break-even point of lossy and lossless accuracies is ∆ = 800. The model is able
to fit just as well, and sometimes better, on some lossy inputs using only quantization. The
results indicate that ∆ has a positive impact on runtime with an unknown negative or positive
impact on accuracy. Hence, one should perform automated feature engineering.
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Scaling: Figure 4.20 shows the scalability of
BWARE in terms of performance on larger subsets
of the Criteo dataset. We observe a starting 2x
performance improvement in Figure 4.18 at 104

rows. The improvement increases in all cases until
109 rows. BWARE is a substantial 11x faster at
108 rows, improving from 31,792 to 2,880 sec.
With lossy encodings of Criteo, both ULA and BWARE show similarly improved performance,
with an increasing gap for more rows.
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Figure 4.21: Kernel Trick Polynomial Regression.

Polynomial Regression: Fig-
ure 4.21 shows the polynomial regres-
sion (leveraging the kernel trick) results.
These results indicate that BWARE fa-
cilitates polynomial feature engineering
with very moderate costs and sometimes
improvements. The best case is Crypto,
where the polynomial features do not
affect the execution time when combined with lossy feature transformations. The other
datasets do not have significant performance improvements. BWARE performs poorly with
lossless feature transformations in the Home dataset at low polynomials because the dataset
contains a few incompressible columns (see Figure 1.3), which do not amortize with lossless
feature transformations. However, once these columns are transformed in a lossy manner, the
performance is good.
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Figure 4.22: Various ML Algorithms.

Other Algorithms: AWARE already
studied the impact of compression on multiple
linear-algebra-based ML algorithms, which we
inherit for BWARE. Figure 4.22 shows the
performance of a few other algorithms. First,
BWARE shows equal performance to ULA for
L2SVM on Santander. PCA on Criteo with a
lossy transformation shows an 83x improvement in execution time. This relative improvement
in performance can be arbitrarily large depending on ∆ because PCA is asymptotically faster
in compressed space. Finally, BWARE shows a solid 2x improvement for K-means on Home
using a lossy transformation.

Table 4.4: Pipeline LM: 8 Transform Encode & 8 Polynomials.
Dataset Measure ULA AWARE BWARE
KDD98 Execution Time 654s 452s 251s

Instructions 110·1012 100·1012 44·1012

Instructions per Cycle 0.94 2.59 2.68
L1-dcache-miss 7,792·109 1,740·109 786·109

Compress/Morph — 148s 21.9s
Transform-Encode 74.1s 59.9s 7.95s

Energy Consumption [173] 338kJ 185kJ 92kJ
Home Execution Time 431s 266s 160s
Adult Execution Time 19.9s 22.1s 16.6s

Santander Execution Time 489s 376s 374s
Cat Execution Time 467s 170s 63s
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4.5.6 Data-centric ML Pipeline
Table 4.4 shows the execution time and characteristics of a full, end-to-end, data-centric ML
pipeline similar to Figure 4.12. The table contains results from a pipeline performing a grid
search of hyper-parameters with eight different ∆ ranging from 5 to 480 and eight polynomials
from 1 to 8. The pipeline uses two outer loops: the first performing transformencode, and the
second polynomial feature construction. The top half of the table contains performance numbers
for the KDD dataset. AWARE is 1.45x faster than ULA, and BWARE further improves by
1.8x. BWARE is the fastest because it reuses intermediate compressed representations through
feature transformations, and AWARE redundantly rediscovers correlated columns. BWARE’s
handling of polynomial features is also used by AWARE in this experiment. AWARE and
BWARE compression also show better cache locality than ULA, which decreases L1 cache
misses by an order of magnitude and in turn, increases instructions performed per CPU cycle.
Furthermore, BWARE improves energy consumption due to more efficient data types and
reduced cache misses because data access is a major energy consumer [109]. The bottom
half of the table shows the results of the same pipeline on Home, Adult, Santander, and Cat.
BWARE is the fastest in all cases. AWARE also does well, except for a small overhead on
Adult where the compression overhead cannot be amortized.

4.5.7 Comparisons with Other Systems
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Figure 4.23: System Performance Comparison.

Finally, Figure 4.23 compares the
performance of transformencode on
Criteo with other systems. The left
plot (E2E) is end-to-end times with
CSV parsing, and the right (TE) is
only transformencode. ULA and
BWARE have high startup times in
E2E, and JIT compilation benefits
in Java are limited for small inputs.
However, for larger sizes, ULA [189]
and BWARE outperform the other systems. Polars is the only system with a dense matrix
result but with UINT8 encoded columns. All other systems use sparse transformations to
run until 107 rows. At 107 rows, BWARE is 4.7x (E2E) and 11.4x (TE) faster than Polars.
BWARE’s E2E times are equal to ULA when reading CSV, which is still good because it
yields a compressed output for subsequent operations (F-CM). We also included a dotted line
for BWARE reading a compressed frame from disk for compressed encoding (CF-CM). For
more than 232 cells (max integer), many of the systems crash. SK-learn can scale further, but
BWARE is 11.9x (E2E) and 76.2x (TE) faster than SK-learn at 108 rows.

4.6 Summary
This chapter introduced BWARE, a holistic, lossless compression framework for data-centric
ML pipelines, integrated into SystemDS [31, 33]. In this context, we push compression through
storage, I/O, feature transformations and feature engineering. We draw two main conclusions.
First, this compression strategy can yield substantial runtime improvements because of repeated
feature transformations and ML model training. Second, compressed feature transformations
preserve information about structural redundancy, achieving improved compression ratios and
data locality. Interesting future work includes support for more feature transformations (e.g.,
image data augmentation) and specialized, heterogeneous hardware accelerators.
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5
Asynchronous Compression in

Federated Learning

Parts of this chapter are from the ExDRA paper and a demo paper [24, 25].

Federated learning allows the training of machine learning (ML) models without collecting
raw data in a centralized place. However, with this broad definition, there are many design
decisions associated with building a federated system. The central question in federated
learning is what can be shared from the federated sites. Data privacy requirements, data
ownership, and other constraints define what is allowed to be done with the data. These
constraints can hinder central data consolidation, which is typical for training ML models. To
maintain even stricter constraints privacy-preserving ML can be used via multiple techniques.

Private 
Data 
(no 

sharing) 

Public Data 
(full sharing, 
w/ partners) 

Privacy 
Enhancing 

Technologies 
(FHE, MPC, 
diff. privacy) 

Anonymized 
Data  

(k-anonymity, 
pseudonyms) 

Surrogate 
Data  

(properties-
preserving 

synthetic data) 

Increasing 
Utility/Perf

Increasing 
Privacy

Aggregates 
(Federated ML, 

Federated w/ 
secure comm.) 

Figure 5.1: Spectrum of Data Sharing

Data Sharing Spectrum: Figure 5.1 shows a spectrum of different approaches to general
data sharing. On the extreme left, no data is shared, meaning we would be unable to train
on the data, and therefore, there is no utility of the data. Fully homomorphic encryption
(FHE) [9, 83, 87], multi-party computation (MPC) [164], and differential privacy [119] provide
the strongest privacy guarantees while allowing training on the data with limited utility.
While maintaining strong privacy guarantees, the limited utility and high overhead make it
impractical in many cases for training in larger ML pipelines. On the right, the data is freely
available for sharing, marking the default training case of most ML systems. A more private
alternative to full sharing is surrogate data, which synthesizes data based on real datasets and
anonymized datasets. Both these alternatives improve privacy at the cost of a bit of utility.

Federated Learning: Federated Learning [122, 40] overcomes the sharing problem by
performing decentralized computations that push operations directly to their data sources. A
common architecture for performing federated learning is a data-parallel parameter server [64,
213, 148], adopted for instance in TensorFlow [5] and PyTorch [149].
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Parameter Server: In the general parameter server architecture, we initialize a central
coordinator with a model. The federated sites act as workers that pull the central model and
perform model updates via forward and backward passes through a neural network. The passes
produce gradients that are sent back to the central coordinator. The coordinator accumulates
all the gradients from all the federated sites and updates the global model. Once the model is
updated, the loop starts over with federated sites pulling the new model.

The Federated Data Sharing: If done right, the data sharing of federated learning only
reveals data distributions but not the underlying raw data. Therefore, federated learning adds
another point to the spectrum of data sharing, where only aggregates, for instance, in the form
of gradient updates, are shared. Federated learning is more private than anonymized data but
less than FHE, MPC, and differential privacy. The intermediate positioning of federated data
sharing enables high levels of privacy together with a high degree of utility [24].

Data Science Workflows: Typical data science projects deal with open-ended questions
to create business value by finding interesting patterns and constructing various models
on data [31]. The process is exploratory, where analysis and results guide the refinement
of pipelines [67, 248], and due to the exploratory nature, little investment is made into
systematic data acquisition, integration and pre-processing [208]. Furthermore, data typically
is stored in raw (potentially distributed) formats where repeated downloads, reads, and similar
preprocessing and storage overhead can be reduced by leveraging standing federated processes
and decentralized computation.

Contributions: This chapter describes the architecture of the federated ML backend
integrated into Apache SystemDS [24]. Our detailed contributions include:

• System Architecture: Section 5.1, we describe the federated system architecture of
SystemDS and its components for model and pipeline management, federated ML and
data preparation.

• Federated ML Runtime: Section 5.2 describes the federated runtime of SystemDS,
federated data organization and compression (Section 5.3), as well as federated linear
algebra, parameter servers and data transformations.

• Federated Runtime Experiments: Section 5.4 shows experimental results of various
local and federated ML algorithms and pipelines. Including standing workers’ dynamic
workload-aware compression of data.

5.1 Federated Primitives
Before defining the federated system architecture of SystemDS, we cover two general federated
properties relevant to the federated compression of intermediates. First, the semantics of
federated data, followed by techniques for maintaining privacy in the federated setting.

5.1.1 Federated Data
In a federated setting, the raw data remains at the individual federated sites. Operations are
pushed to the sites, and results are collected from individuals or chains of pushed operations.
For data analysis and model building, multiple back-and-forth transfers of intermediate results
can be performed. As a primary concept, federated data, a frame or a matrix, can be defined
as arbitrarily (most likely non-overlapping) disjoint regions of data. However, two cases are
predominant.

Row-partitioned: Row partitioned data—or horizontal federated learning [40, 252]—
comprises data partitions of full rows, where all federated sites contain different row segments.
Conceptually, row-partitioned data contains all categories of features. In other words, there is
no site that has any extra features compared to others. In the row-partitioned case, labels for
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the rows can be located on the federated sites or uniquely assigned based on the federated
sites from the coordinator.

Column-Partitioned: Vertically partitioned federated learning [252, 247], also called
column-partitioned federated data, is less common and refers to distributed subsets of features.
The distributed features can be partially overlapping. Examples include site-specific sensors or
distributed heterogeneous data collection. Combining the different features together gives a
richer feature set for training ML pipelines.

5.1.2 Federated Privacy
To maintain the privacy of the data, federated learning can employ various strategies. A
key property to maintain is that any shared information does not allow reconstruction of the
private data of federated sites. To achieve this level of privacy, there are multiple techniques
that can be employed.

Aggregates: First, most ML models can be fitted to federated data while restricting the
communication to transfer only aggregates (e.g., gradients). However, to maintain privacy, any
aggregate has to contain a sufficient number of elements, and aggregation operators, via, for
instance, matrix multiplication, have to be sufficiently complex to not reveal underlying data.

A Limitation: The federated backend in SystemDS does currently not verify the
complexity of the broadcasted variables to ensure the privacy of returned results. An example
of an adversarial input is a weight matrix with a single non-zero such an operation essentially
selects a tuple to be collected by the centralized coordinator. While this example is simple
to find, it is complex to define the requirements of all possible adversarial intermediates
that would break privacy. Therefore, evaluating each weight matrix transferred to calculate
gradients would be expensive.

Encrypted Communication: An additional and orthogonal privacy enhancing method
is encrypted communication that—via standard encryption techniques—ensures that interme-
diates are only shared with trusted parties. This is necessary to ensure safe communications
between the coordinator or federated sites in case the connection is unsafe and not otherwise
sufficiently covered.

5.2 Federated Runtime
We build a federated backend into SystemDS that is able to compile DML-based scripts into
hybrid execution plans containing local, distributed, and federated operations. Federated
instructions execute linear algebra primitives on federated data sources.

5.2.1 Federated Backend
To use the federated capabilities of SystemDS, we initialize federated data objects that inform
the compiler to subsequently use federated instructions for processing. Figure 5.2 shows this
setup and integration of the federated backend.

Federated Data: We support federated matrices and frames. A centralized controller acts
as the coordinator and holds metadata—in the form of a federation map—of federated data.
The map stores the data type, value type, dimension, and sparsity, as well as non-overlapping
data ranges and their locations (host, port, and path). For example, in Figure 5.2 we have a
federated matrix of 100K × 70 matrix X, with distributed row partitions [1 : 40K], [40K : 80K],
and [80K : 100K] on node1, node2, and node3, respectively. If a local operation at the
coordinator tries to pin X into memory, the federated data is transparently transferred—unless
it violates privacy constraints—and collected into a local matrix on the controller.

Federated Workers: Similar to the coordinator, the federated workers are also control
programs but started as worker processes that act like permanently running servers at the
federated sites. A worker listens on an input queue for incoming RPC requests (called
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Figure 5.2: Federated Runtime Backend

federated requests), executes these requests, maintains a local symbol table, checks privacy
constraints, and returns an RPC response. This design of worker CP programs provides very
good flexibility and reuses the I/O subsystem, buffer pool mechanisms, as well as local and
distributed operations. For example, it even allows data center federation [235], where a single
federated operation triggers distributed operations in a Spark [255] or Flink [16] cluster at the
federated site.

Initialization: A user can initiate a federated matrix or frame from federated
configurations, files containing a list of federated sites and shapes. The domain-specific
language (DSL) in SystemDS DML can instantiate a federated matrix with:
X = federated ( addresses = list(a, b),

ranges = list(list (0 ,0) , list (200 , 10) ,
list (200 , 0), list (400 , 10)))

This matrix consists of two federated sites with row-partitioned data a and b, each site
containing 200 rows and 10 columns of data. It can also be allocated in the Python API:
from systemds . context import SystemDSContext
with SystemDSContext () as sds:

X = sds. federated ([a,b], [([0 ,0] , [200 ,10]) ,
([200 ,0] , [400 ,10])]

The federated X matrix can subsequently be used in any linear algebra program, and
SystemDS automatically compiles federated instructions where applicable. Instead of providing
a labor-intensive implementation of individual federated ML algorithms, we aim to simplify
the development and execution of federated scripts.

Federated Requests: The coordinator communicates with workers through federated
requests, using Netty (also used in Spark) as a network I/O framework for RPCs and data
transfers. To simplify the implementation of federated operations, we restricted the federation
protocol to only six generic request types simplifying the design:

• READ(ID, fname): Creates a data object from a filename, reads it, and adds it by ID to
the symbol table.

• PUT(ID, data): Receives a transferred data object, and adds it by given ID to the
symbol table.

• GET(ID): Obtains a data object from the federated site’s symbol table, and returns it to
the coordinator.

• EXEC_INST(inst): Executes an instruction, which accesses inputs and outputs by IDs
in the symbol table.
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• EXEC_UDF(udf): Receives a serialized, user-defined function (UDF) object, executes this
UDF over requested inputs by ID, may add outputs to the symbol table, and returns a
custom object to the coordinator.

• CLEAR: Cleans up execution contexts and variables.

For efficiency, the coordinator sends RPCs to all workers in parallel, and a single RPC can
contain a sequence of requests and returns a single response. The simplicity of these request
types has two profound advantages. First, we can reuse existing instructions for composing
federated operations. Second, this design allows for federation hierarchies. If the worker-local
data is federated data, a worker can also act as a coordinator of a subgroup of workers.

5.2.2 Federated Linear Algebra
For broad applicability in various ML algorithms and data science lifecycle tasks, our federated
runtime supports both federated linear algebra and federated parameter servers. Federated
linear algebra utilizes similar strategies as distributed, data-parallel operations but retains
the raw federated data at its federated site. This requirement creates additional challenges
and needs compiler support for finding valid yet efficient runtime plans if operations do not
directly apply.

Basic Linear Algebra: During compilation and runtime, we check if any inputs are
federated data, and dispatch this call to supported federated instructions. Similar to RDD
transformations and actions [255], these federated instructions then utilize federated requests—
and related high-level primitives for broadcasting and aggregation—to compute the operations
over federated data. If no aggregation is needed, the output is itself federated data.

Example: Federated Matrix Multiplication: Assume a matrix-vector (or matrix-
matrix with small right-hand-side) multiplication X v and vector-matrix multiplication v⊤ X
with nrow(X)≫ ncol(X) and X being composed of federated row partitions. For matrix-vector,
we broadcast v via PUT, execute a local matrix-vector multiplication per partition via EXEC_INST,
which yields a new federated vector with related federation map (logical rbind here), and finally
execute an optional rmvar instruction via EXEC_INST to clean up the broadcast v. In contrast,
for a vector-matrix, we perform a sliced broadcast of v (vector parts according to row ranges),
execute a local vector-matrix multiplication per partition via EXEC_INST, obtain the results via
GET, do a final aggregation via element-wise vector addition at the coordinator, and again,
clean up all intermediates.

Supported Operations: So far, we support—as summarized in Table 5.1—federated
matrix multiplication, unary aggregates, unary element-wise operations, binary matrix-matrix,
matrix-vector, and matrix-scalar operations, ternary, quaternary, and parameterized builtin
operations, and various reorganizations. These operations further support both row- and
column-partitioned federated data via specialized implementations. Most of the binary
operations (e.g., matmult, element-wise) support a single federated input and consolidate a
second federated input (e.g., aggregated intermediates) in the coordinator. However, whenever
two federated inputs are co-partitioned (e.g., because one originated from the other), we
directly execute federated operations on them as well.

Higher-level Primitives: SystemDS follows the premise that many data science lifecycle
tasks—like data validation, data cleaning, feature and model selection, and model debugging—
are themselves based on machine learning and numerical computation [31]. These higher-level
primitives are hierarchically composed from built-in functions that rely on linear algebra and
thus, are directly supported on federated data as well. In case a binary or ternary operation
is not supported over multiple federated matrices, some of them are consolidated in the
coordinator, or a privacy exception is thrown if this consolidation would reveal private raw
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Table 5.1: Example Federated Instructions.
(Since ExDRA [24], we support many more operations)

Operation Type Examples
Matmult mm, tsmm, mmchain

Aggregates sum, min, max, sd, var, mean
rowSums, . . . , rowMeans, colSums, . . . , colMeans

Unary abs, cos, exp, floor, isNA, log, !, round, sin,
sign, softmax, sqrt, tan, sigmoid,

Binary &, cov, cm /, =, >, >=, %/%, <, <=, log,
max, min, max, -, %%, *, !=, |, +, ˆ, xor

Ternary ctable, ifelse, +*, -*
Quaternary wcemm, wdivmm, wsigmoid, wsloss

Transform/Reorg tfencode, tfapply, tfdecode,
rbind, cbind, t (transpose), removeEmpty

replace, reshape, X[:,:] (matrix indexing)

data. For this reason, we are working toward better compiler support that proactively considers
privacy constraints and generates efficient runtime plans that adhere to these constraints.

Example: Federated K-Means: Starting bottom-up, individual ML algorithms are
good examples of such higher-level primitives. For instance, consider the inner loop (after
initialization and inside a loop for multiple runs) of K-Means clustering, where X is a federated,
row-partitioned matrix, and C are the current centroids:
while ( term_code == 0) {

# Compute Euclidean squared distances records - centroids
D = -2 * (X %*% t(C)) + t( rowSums (C ^ 2));
# Find the closest centroid for each record
P = (D <= rowMins (D));
# If records belong to multiple centroids , share them
P = P / rowSums (P);
# Compute the column normalization factor for P
P_denom = colSums (P);
# Compute new centroids as weighted averages
C_new = (t(P) %*% X) / t( P_denom ); # ...

}

The first matrix multiplication X C⊤ yields another federated, row-partitioned matrix. The
subsequent row aggregates and element-wise operations similarly create aligned federated
intermediates, which are then aggregated and only consolidated in aggregate form via colSums(P)
and P⊤ X, where the latter is an aligned matrix multiplication of two federated matrices. Note
that this built-in function script is agnostic of local, distributed, or federated input matrices.

While some ML algorithms directly map to federated operations that preserve private
data, other algorithms need dedicated compiler assistance for generating valid runtime plans.
Specifying data exchange (i.e., privacy) constraints for federated raw data, tracking derived
properties of intermediates and data transfers, and generating constraint-aware plans is an
important direction for future work but beyond the scope of this thesis.
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5.2.3 Federated Data Preparation
Besides ML-based data cleaning and data pre-processing—which are based on federated linear
algebra—there are other data preparation techniques that require special federated support.
These operations include feature transformations, and data access methods for raw data. In
contrast to typically stateless ML systems and libraries, the architecture of standing federated
workers further provides rich opportunities for reuse and adaptive data reorganization across
multiple pipeline runs of a single user and multiple tenants.

Feature Transformations: The transformencode and transformapply standard
feature transformations already presented in Chapter 4 like recoding, feature hashing, binning,
and one-hot encoding also apply to the federated setting. The federated instructions of these
operations leverage the flexibility of UDFs via EXEC_UDF and preserve privacy of the raw
federated data. In detail, federated transformencode uses a two-pass approach. First, we
build encoder-specific metadata for all non-pass-through features (i.e., all columns except
unmodified numeric columns) at the federated sites, as well as consolidate—and optionally
sort—the metadata for consistent encoding. Second, we broadcast the aggregated metadata,
and in a second pass over the federated data, then perform the actual encoding. The outputs
are a federated encoded matrix with consistently-aligned one-hot-encoded features (equivalent
to local encoding), and a local metadata frame.

Advanced Federated Feature Transformations: There are many opportunities for
improved federated feature transformations. First, techniques like zigzag joins [226]—that
rely on Bloom filters for pre-filtering—can be adapted for determining categories that need to
be exchanged with the coordinator, thereby reducing data transfer and revealed information.
Similarly, for features that only exist at a single federated site (e.g., column-partitioned
federated data), we only need to exchange the number (instead of the set) of distinct items.
Second, there is a tradeoff between privacy versus accuracy. Instead of recoding, users can
resort to feature hashing (with an agreed hash function), which is computed in a purely
federated manner without data exchange. However, hash collisions merge multiple categories
into one feature, which might negatively affect accuracy. In our current implementation, we
support the different transformations but leave the choice up to the user because we expect
related negotiations among involved parties.

5.2.4 ExDRA Future Work
The ExDRA paper [24] highlighted three different directions of further improvements
on the federated backend: lineage-based reuse [190], compression [74], and incremental
maintenance [172, 205]. While generally applicable, there is a big potential in leveraging
these for the standing federated sites that allow asynchronous optimizations between federated
requests. For exploratory ML pipelines with repeated raw data access and data enrichment,
techniques such as workload-aware compression would allow to eliminate unnecessary
redundancy, and specialize the data representation for the observed workload characteristics,
while retaining the appearance of a stateless ML system and preserving the privacy of the
federated raw input data.
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5.3 Standing Federated Workers
Since the ExDRA paper [24], we have updated the federated backend of SystemDS. One
addition is adaptive workload compression on standing workers. It consists of two components:
workload collection and asynchronous compression. Figure 5.3 shows a high-level example of
the updated process.

Dynamic Collection of Workload: Once a request arrives at the federated site, it
contains a sequence of instructions to be performed on intermediate variables and data missing
to execute the instructions. The federated site contains an execution context with all live
variables. If workload adapting compression is enabled, we maintain a ConcurrentHashMap
that maps all intermediate values to workload vectors. The workload vectors are equivalent
to the workload vectors extracted in AWARE (Figure 3.11). For simplification, Figure 5.3
uses smaller workload vectors with fewer asymptotic buckets. When processing individual
instructions, each input increments its corresponding workload vectors and instruction counters.
A single federated request can contain multiple instructions. Therefore, the workload vectors
and instruction counters may increase many times on one request. In the example, an LMM
instruction uses v7, increasing its corresponding bucket from 13 to 14. New intermediates or
transferred variables also get assigned a workload vector. Therefore, v8 gets a new workload
vector and increases its RMM counter, while the result v9 contains an empty workload.
Depending on the instructions, the result requested in a federated instruction could be a
compressed intermediate. In such cases, the result would be transferred in a compressed form.

Asynchronous Compression: Once the entire federated request is processed, we spawn
a thread to loop through the variable map and identify intermediates that should be analyzed.
If a variable’s instruction counter is above ten (the default, but another threshold can be
provided by the user), we reset the counter to zero and spawn an additional asynchronous
task to try to analyze, compress, and/or morph that intermediate. This design allows the
federated site to return the results of requests as fast as possible and leverage the idle time
after requests for compression. In the Figure 5.3, we see that the v7 variable has an instruction
count of 13. Once the federated request is processed, the asynchronous analysis identifies v7
as a candidate and reset the instruction counter. The final state of the federated worker, after
the asynchronous analysis, is v7 in a workload-optimized compressed format. Because the
compression is performed asynchronously out of the critical path of the instruction execution,
it does not directly impact execution time, except in cases where other federated requests
arrive while performing analysis and compression.
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5.4 Experiments
This section describe the experimental results from the ExDRA paper [24]. Our experiments
study the performance of the described federated runtime backend of SystemDS, with various
ML algorithms and pipelines, network configurations, and in comparison with local execution
and other ML systems. Since the submission of the paper, all results have been independently
fully reproduced1.

5.4.1 Experimental Setting
Baselines: For evaluating the characteristics of federated linear algebra and parameter servers
in controlled yet practically relevant scenarios, we compare the following four main baselines:

• Local: Our main baseline is SystemDS with local, in-memory operations, which uses
equivalent runtime plans and runtime operations, but executed locally on a single node.

• Federated LAN: The federated runtime backend dispatches runtime operations on
federated matrices to the described federated linear algebra operations and parameter
server. For Federated LAN, all coordinator and workers nodes are part of a local area
network (LAN) of two racks, connected via an HPE FlexFabric5710 48XGT switch.

• Federated WAN: In addition to Federated LAN, we experiment with the federated
backend in a wide-area network (WAN) setting. Here, a client node runs the coordinator
in Copenhagen, Denmark and the workers run in a cluster (described below) in Graz,
Austria – a distance of more than 1,000 km with round-trip latency of about 35-60 ms,
and data transfer bandwidth of about 1.4-2 MB/s.

• Other ML Systems: To ensure that Local is a competitive baseline, we also compare
with local execution in Scikit-learn 0.23 [186] for traditional batch ML algorithms, and
TensorFlow 2.3.1 [5] for mini-batch neural network workloads. These systems do not
support federated ML.

Cluster Configuration: We ran all experiments described here on eight nodes, each
having a single AMD EPYC 7302 CPU at 3.0−3.3 GHz (16 physical/32 virtual cores), 128 GB
DDR4 RAM at 2.933 GHz balanced across 8 memory channels, 2×480 GB SATA SSDs (system),
12 × 2 TB SATA HDDs (data), and 2 × 10Gb Ethernet. The nominal peak performance of
each node is 768 GFLOP/s and 183.2 GB/s, whereas we measured 109.6 GB/s for an 8 GB
matrix-vector multiplication. For wide-area network tests, we use an additional client node
Dell XPS 15 with one Intel i9-9980HK CPU at 2.4−5.0 GHz (8 physical/16 virtual cores), and
32 GB DDR4 RAM at 2.666 GHz. Our software stack comprises Ubuntu 20.04.1 as operating
system, OpenJDK Java 1.8.0_265, and SystemDS 2.0.0++ (as of 03/2021), configured with
native Intel MKL BLAS for dense matrix-matrix multiplications. The coordinator and worker
nodes use consistent JVM configurations of -Xmx110g -Xms110g -Xmn11g, while the WAN
client uses -Xmx30g -Xms30g -Xmn3g.

Workloads: The tested workloads include the ML algorithms linear regression (LM),
L2-regularized support vector machine (L2SVM) and multi-class logistic regression (MLogReg)
for classification, K-Means for clustering (with K=50 centroids), principal component analysis
(PCA) for dimensionality reduction (with K=10 projected features), as well as two parameter
server models: a fully-connected feed-forward network (FFN) with BSP, 5 epochs, batch size
512, and trained with stochastic gradient decent (SGD) with Nesterov momentum, as well as
a convolutional neural network (CNN) with BSP, 2 epochs, batch size 128, and standard SGD.
These algorithms are trained on a synthetic 1M× 1,050 feature matrix (after one-hot encoding
categorical features), which closely resembles the characteristics of the data from a paper

1https://github.com/damslab/reproducibility/tree/master/sigmod2021-exdra-p523
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production use case [24]. For the CNN scenario though, we use the standard 60K/10K× 784
MNIST dataset from computer vision. The feature matrix X is stored as a row-partitioned,
federated matrix with balanced partition sizes at the federated sites (i.e., worker nodes), while
the labels y are stored at the coordinator node. We fix the number of maximum iterations for
iterative ML algorithms and report the end-to-end runtime—including JVM startup and I/O
from binary files—as a mean of (at least) three repetitions.

5.4.2 ML Algorithms Performance
In a first set of experiments, we compare the local ML algorithms performance with
both Federated LAN and WAN. We also vary the number of federated workers, evaluate
communication settings such as SSL encryption, and compare other ML systems.

ML Algorithms: Figure 5.4 shows the end-to-end runtime of the ML algorithms. As a
first step, consider a scenario of three federated workers (the number of workers is varied on the
x-axis), which require additional communication but also provide more computational resources.
The ML algorithms have different characteristics in that regard. First, LM internally calls
an iterative conjugate-gradient LM method (used for ncol(X) > 1,024), where each iteration
performs an X⊤(X v) over the federated data. Compared to local, we observe low overhead
and already a runtime improvement with three workers. The Fed LowerBound represents the
remaining local execution time that is not subject to federated computation and thus, the
best Fed LAN could achieve. Second, L2SVM uses two nested while loops, where each outer
iteration computes gradients, and the inner loop performs a line search along the gradient.
Since the federated X is only accessed via matrix-vector and vector-matrix operations in the
outer loop, the differences to the local runtimes are much smaller. Third, MLogReg also uses
two nested while loops, but each inner iterations performs an X⊤(w⊙ (X v)) on the federated
X and accordingly, we see again a solid improvement with three workers. Fourth, a single
run of K-Means has a single while loop, which uses more compute-intensive matrix-matrix
multiplications. Fifth, PCA is a non-iterative algorithm and computes an Eigen decomposition
of X⊤X and subsequently, projects the data via another matrix multiplication to K=10
features. With large number of rows, the two matrix multiplications dominate the runtime.
Both K-Means and PCA accordingly show also substantial improvements compared to local
execution. Finally, FNN and CNN use the mini-batch parameter server architecture with
local per-batch updates and global per-epoch synchronization. The larger compute resources
of the federated backend yield improvements despite the additional communication. Most
importantly, none of these federated ML algorithms ever communicates the raw input data
to the coordinator (and thus, preserve privacy of the federated data), they all show only
small overhead, and in many cases even runtime improvements. In additional experiments
with federated labels y and/or smaller number of columns (not shown here), we observe that
some algorithms like L2SVM incur substantially larger overhead though, because all vector
operations of the inner loop are then converted to federated operations as well, which increases
communication latency without benefiting from the larger computational resources. In the
Federated WAN setting, the relative communication overhead is also substantially higher, but
even there, the end-to-end overhead is moderate, which renders federated learning practical
for real deployments.

Scalability: Besides the comparison of Local, Federated LAN, and Federated WAN,
Figure 5.4 also shows the scalability of our federated backend with increasing number of
federated workers. We investigate strong scaling behavior by keeping the data size constant.
The coordinator sends federated requests in parallel to all the workers and either broadcasts
all side inputs or only relevant slices according to operation requirements. The size of
communicated intermediates is moderate in all scenarios though; typically, we exchange only
vectors in the number of rows (LM, L2SVM, MLogReg, KMeans) or columns (LM, L2SVM)
of X, columns-by-classes (MLogReg), columns-by-centroids (K-Means), columns-by-columns
(PCA), or model sizes (FFN, CNN). Accordingly, we see good scalability, where additional
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Figure 5.4: Algorithm Comparison and Scalability with Number of Federated Workers
(106 × 1,050 feature matrix X).

workers even improve the runtime up until a point, where the partitions per worker become
so small that communication increasingly dominates the total runtime. For L2SVM and
LM, the improvements are smaller because L2SVM is dominated by vector operations at
the coordinator, and LM has a very small runtime, where initial startup constitutes a large
fraction of total execution time. In the Federated WAN, the communication overhead is larger
but still moderate overall. As the number of workers increases both federated computation
and—maybe surprisingly—communication time reduces. The coordinator sends RPCs to all
workers in parallel (which mitigates the additional latency), and the more workers the smaller
some of the transferred intermediates (e.g., n/#workers).

Figure 5.5: Comparison of Communication Settings.

SSL Encryption: The fed-
erated backend of SystemDS sup-
ports SSL-encrypted communica-
tion channels between the coordi-
nator and federated workers. We
leverage Netty’s SslContext for
encrypting the federated requests
and responses including exchanged
data. In a next experiment, we
study the overhead this encrypted
communication entails. Figure 5.5
compares LM, K-Means, and FFN—which have very different characteristics and thus, showed
different scaling behavior—in the Federated LAN, Federated WAN, and Federated WAN with
SSL settings. For LM—where exchanged intermediates are small (vectors in the number of
columns)—the overhead of WAN and additional SSL encryption is limited to about 2x and
10%, respectively. K-Means shows larger overhead of about 4-8x in a WAN setting due to
more iterations and larger transfers (columns-by-centroids), and again about 15% overhead for
SSL. In contrast, the federated parameter server shows only moderate WAN and SSL overhead
because of the higher computational workload per worker and infrequent per-epoch global
model updates and synchronization.

Figure 5.6: Comparison with Other ML Systems.

ML System Comparison:
With the comparison of local and
federated algorithms in mind, we
can now turn to a comparison
with other ML systems, specifically
Scikit-learn [186] and TensorFlow
[5] as widely-used ML systems. We
select K-Means, PCA, FFN, and
CNN for comparison in order to
limit the influence of algorithmic
differences. The algorithms were configured to yield a similar number of iterations (e.g.,
K-Means) and final accuracy. Figure 5.6 shows the results comparing local and Federated LAN
configurations of K-Means and PCA with Scikit-learn, and FFN and CNN with TensorFlow.
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Overall, we observe mixed results. K-Means is 1.6x slower than Scikit-learn, while PCA is 2x
faster. Similarly, FFN is 25% faster, while CNN is 2x slower than TensorFlow. We attribute
these differences to remaining algorithmic discrepancies, and the comparison with best-of-breed
ML systems for the different algorithms, whereas SystemDS aims to support a wide range
of algorithms and deployments. For CNN, the overhead is partially due to SystemDS using
sparse 2d backwards convolution data/filter and other operations because MNIST and related
intermediates are just below the internal sparsity threshold. Moreover, TensorFlow’s parallel
operator scheduling is advantageous in small mini-batch scenarios. In additional experiments on
a spectrum of data characteristics, we observed relative improvements of SystemDS compared
to the other ML systems with increasing sparsity, number of rows, and batch size. Most
importantly, these comparisons ground the observed Federated LAN results in a performance
range close to state-of-the-art systems, supporting the conclusion of applicability in practice.

5.4.3 ML Pipelines Performance
In a second set of experiments, we now return to our main motivation of supporting entire ML
pipelines on federated raw input data without central data consolidation.

ML Pipeline Setup: The workload is a simplified training pipeline of a paper production
use case [24]. This pipeline reads the input data of continuous and categorical features as a
federated frame, and transforms the frame via recoding and one-hot encoding into a numeric
input matrix and a meta frame that holds the recode maps. Subsequently, we perform value
clipping for values outside the interval [−1.5σ, 1.5σ] of column standard deviations, normalize
the data to zero column means and column standard deviations one, and finally, create 70/30
train and test splits. In order to retain a balanced data distribution across federated workers,
we perform this splitting via a uniformly sampled selection-matrix-multiply. Finally, we train
a regression or neural network model on the train split, evaluate its performance on the test
split, and write out the model and metadata.

Figure 5.7: ML Pipeline Scalability.

Scalability: Figure 5.7 shows the
total execution time of ML pipeline
P2 on a synthetic federated dataset
of 106 observations that map—after
encoding—to a 1M × 1,050 feature
matrix. As the number of workers
increases, we again see good improve-
ments compared to local operations.
The federated transformencode, pre-
processing like outlier removal and nor-
malization, train/test splitting, and
LM training nicely map to federated linear algebra operations. P2_LM and P2_FNN differ
only in the used training algorithm. The larger compute workload of P2_FNN then explains the
better scalability with more workers. For P2_LM, already a single worker shows improvements
over local execution because of the additional resources of a coordinator and one worker
compared to a single node, which can be used for garbage collection and JIT compilation.
Finally, we also partially support the remaining ML pipelines of our use cases in a federated
environment. These pipelines include pre-processing steps like missing value imputation, PCA,
correlation matrices, density-based clustering, as well as the task-parallel training of multiple
GMM (Gaussian Mixture Model) instances.

5.4.4 Asynchronous Compression
To combine the topics of workload-aware compression and federated learning, this section
describes the results of running workload-aware federated workers.
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Table 5.2: K-Means Scaling Results (runs = 10 , k = 10) on the Adult Dataset.

Scale ULA - Workers AWARE - Workers
1x 9.4 sec 9.4 sec

10x 16.6 sec 15.6 sec
100x 140.3 sec 97.1 sec

Experimental Setting: The subset of the nodes used in AWARE’s [23] distributed
experiment. In detail, we use a cluster of 1+2 nodes, each with a single AMD EPYC 7443P
CPU at 2.85 GHz (24 physical/48 virtual cores) and 256 GB DDR4 RAM at 3.2 GHz. The
experiment is set up using two federated sites and one controller contained in the same cluster
with high-speed 200Gb interconnects. The system runs Ubuntu 20.04.1, OpenJDK java 17.0.11
with JVM arguments -Xmx250g -Xms250g -Xmn25g –add-modules=jdk.incubator.vector,
and SystemDS version 3.3*, with custom modifications for leveraging Java’s Vector API for
compute-intensive operations such as matrix multiplication.

Data: As dataset, we use the Adult dataset [26]. The dataset is preprocessed into a matrix
and replicated onto each of the two federeated worker sites.

Experiments: We use two experiments to highlight the power of standing workload-aware
compressing workers. The first uses the K-means algorithm, while the second uses a chain of
right matrix multiplications with interleaved matrix scalar binary additions.

End-to-end K-means: We use K-means as an example algorithm because most operations
are pushed to the federated site (as the red line in Figure 5.4 shows). Therefore, the workload-
aware federated workers get varied federated requests with various instruction types that they
can use to compress their data partitions. Table 5.2 shows the end-to-end results of running
K-means clustering. We can observe that on the short-running job with the standard size
of Adult, the performance is equivalent. When we increase the data size on the federated
site, the workload-aware workers can exploit the data redundancy and achieve a speedup.
Figure 5.8 shows the execution time distribution for individual instructions on the federated
workers for the 100x scaling experiment. On the right, in red, the normal federated worker
shows that especially matrix multiplication (ba+*) and the densifying addition (+) use a
significant portion (51%) of the federated execution time. On the other side, the two federated
workers, in blue, choose different compression schemes for their data. The sites choose different
schemes because their data partitions have slightly different characteristics. For instance,
the first federated worker chooses a scheme with faster right matrix multiplication vs slower
overlapping decompression. However, in the end, the total time is roughly the same for both
federated sites. The total time sum for the federated sites is larger than the overall time of the
algorithm because we ran ten k-means concurrently. Hence, the experiment highlights that the
asynchronous workload-aware compression on the federated workers can improve execution
performance, even with overlapping requests.

# Instruction Time(s) Count
1 <= 34.618 142
2 ba +* 31.332 284
3 r’ 30.808 143
4 + 18.552 142
5 * 15.458 142
6 uarmin 9.825 142
7 / 6.522 141
8 uack+ 2.226 141
9 uark+ 2.075 142

10 uasqk + 0.482 1
11 ucumk + 0.426 1
12 == 0.380 1
13 rmvar 0.080 1280
-------------------------------
TOTAL : 152.784 sec

AWARE Worker 1
# Instruction Time(s) Count
1 ba +* 44.192 284
2 <= 26.573 142
3 r’ 21.563 143
4 * 14.543 142
5 + 13.245 142
6 uarmin 11.348 142
7 / 9.309 141
8 uark+ 4.185 142
9 uack+ 3.258 141

10 uasqk + 0.504 1
11 == 0.325 1
12 ucumk + 0.311 1
13 rmvar 0.072 1280
-------------------------------
TOTAL : 149.428 sec

AWARE Worker 2
# Instruction Time(s) Count
1 ba +* 85.218 284
2 + 59.181 142
3 <= 46.958 142
4 / 26.407 141
5 * 26.398 142
6 r’ 18.086 143
7 uarmin 5.625 142
8 uack+ 5.434 141
9 uark+ 4.599 142

10 uasqk + 0.476 1
11 == 0.337 1
12 ucumk + 0.267 1
13 rmvar 0.080 1280
-------------------------------
TOTAL : 279.066 sec

Normal ULA Worker

Figure 5.8: Instruction Breakdown of Two Workload-aware Workers, and One ULA Worker.
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Pseudo Neural Network: The second experiment workload is close to what three fully
connected layers in a neural network would use in inference but without activation functions.
The specific workload has good properties for compressed linear algebra and potential impact
on neural network workloads. However, nonlinear activation functions, a critical part of neural
networks, should be added to improve applicability.

Code: The code used for the experiment is a few lines of declarative linear algebra in the
form of DML code. Note that the code does it specify that we are using federated instructions.
X = read($1)

R = rand(rows = ncol(X), cols = 512, seed = 132)
R2 = rand(rows = 512, cols = 256, seed = 132)
R3 = rand(rows = 256, cols = 128, seed = 132)

for(i in 1:100) {
t1 = time ()
X_r = (((X %*% R +2) %*% R2 +2) %*% R3) +2
X_m = sum(X_r)
t2 = time ()
s = toString (X_m , rows =1, cols= 1)
print ((( t2 - t1) / 1000000) + "," + s) # Print time & sum

}

Instead of using the available federated data creation, we can dynamically detect that it
is a federated workflow based on the read($1) command’s data. If the data path on disk
contains a JSON object specifying the federated address, ports and paths for the federated
data. We automatically compile and use appropriate federated instructions. Such a federated
JSON file looks like this:
[{" dataType ": " MATRIX ",

" address ": " localhost :8001",
" filepath ": "data/ adult_features .data",
"begin": [0,0],
"end": [32561,107]
},{
" dataType ": " MATRIX ",
" address ": " localhost :8002",
" filepath ": "data/ adult_features .data",
"begin": [32561,0],
"end": [65122,107]}]
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Figure 5.9: Federated AWARE (Adult)

Results: Figure 5.9 shows the perfor-
mance of executing the script with the two
federated locations hidden behind a port-
forwarded SSH connection binding the local-
host ports to the two remote sites. The y-
axis is the log-scaled time in milliseconds of a
roundtrip of a single for-loop iteration of the
DML code, while the x-axis is the iteration
count of the loop. The first loop iteration
sends the three random dense matrices, R, to the federated sites. Then, the federated sites
compute Xr via the chain of matrix multiplications, followed by summing the result matrix
in X ′

m, which is the partial sum of each federated site. The sum, Xm, is then calculated by
the coordinator by collecting and adding all X ′

m from the federated sites. This first iteration
is expensive, taking over 2000 ms, because of transfer overheads of the R matrices and JIT
compilations from repeated pipeline execution on the federated workers not having effect yet.
The second iteration intelligently skips transferring the R matrices because they are already
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federated. The skip (together with JIT compilation starting to kick in) makes the iterations
fall to 400-500 ms for both the workload-aware compressed operations and the baseline ULA
execution. We see a slight increase after 3-4 calls in the AWARE execution time to 550 ms,
which happens because the asynchronous workload compression has started and incurs a slight
overhead to performance. After eight iterations, the ULA and AWARE execution-time diverge
because the federated matrix is replaced by the workload-aware compressed version. In the
end, after many more calls, the two implementations somewhat stabilised, with ULA at 300ms
and AWARE at 190ms. However, these results are with each federated site only performing a
small workload with a small dataset.
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Figure 5.10: Federated AWARE Scaling

Scaling: Once we scale the dataset size on
each federated site, we see the potential of com-
pressed linear algebra. Figure 5.10 shows the
performance of executing the same workload
with the Adult dataset 10x and 100x replicated
on each of the federated sites. The replication
is simply appending the same dataset to itself
(rbind). While the compression scheme could
be designed to exploit this naive replicated
data, we do not. The results show the promising and expected behavior, that the compressed
operations scale according to the distinct properties of the underlying replicated data, not the
increase in data size. The scaling, therefore, does not change the execution time of AWARE
once the asynchronous compression has finished.
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5.5 Summary
This chapter introduced the federated backend of SystemDS. We described privacy models,
system architecture, and features of the compiler and runtime execution of the federated
backend. The results show promising properties of the federated execution model. Extending
the standing federated workers with workload analysis and adaptation of asynchronous
compression further improves the performance and shows another use case of workload-
aware compressed linear algebra. In conclusion, leveraging a declarative language that only
defines a program’s behavior allows us to automatically compile complex federated learning
pipelines that leverage workload-adapting compression behind the covers without changing a
single line of code compared to local execution.
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Conclusions and Future Work

The thesis concludes with a summary, key findings, and suggestions for future research.

6.1 Summary
This thesis confirms that compression is effective at fitting data in available memory, reducing
I/O across the storage-memory-cache hierarchy, and increasing instruction parallelism. To get
these gains, we introduce a framework integrated into Apache SystemDS [31] for workload-
aware compressed linear algebra. Our framework contains new compressed schemes, algorithms,
transformations, and direct operations without decompression.

Chapter 1 introduced the topic and highlighted four motivational factors for using
compressed linear algebra. First, real-world data contains redundancy, and compression
can exploit redundancy. Second, lossy transformations and feature engineering can introduce
redundancy in seemingly random data. Third, ML pipelines contain the same redundancy
patterns through multiple stages of feature transformations. The chapter concludes that
systems should exploit the redundancy and avoid rediscovering compressible patterns through
pipeline stages.

Chapter 2 described different lossless compressed formats and how frameworks use
compound variations of compression techniques. The variations aim at different tradeoffs
between compression size and (de)compression time. The section continued describing related
frameworks’ support for pushing computation into compressed formats. We identified a
common weakness of related work relying on sparse linear algebra.

Chapter 3 showed how workload-aware compression can construct a compressed format of
numeric matrices optimized for a specific workload. Unlike previous work, our format allows
densifying operations and returns compressed intermediates on more linear algebra operations.

Chapter 4 defined ways of exploiting data redundancy via compressed formats through
feature transformations and feature engineering. Furthermore, it contains methods for
morphing already compressed representations into other workload-optimized formats without
decompression. We show how morphing instructions dynamically compile into directed acyclic
graphs of operators to be used at program runtime.

Finally, Chapter 5 contained a description of the federated backend of SystemDS and used
it as a use case of applying workload-aware compression to standing federated workers. The
workload-aware workers can, via extensions, adapt internal data structures to their workloads.
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6.2 Conclusions
There are many conclusions to draw from our work. However, we would like to focus on three:

• First, declarative language abstractions only defining linear algebra operations intentions
allow efficient use of specialized data structures. Using the declarative language, we can
automatically morph data into workload-optimized formats.

• Second, we conclude that workload-aware compression that summarizes workload and
optimizes compression for minimal execution time is better than a pure focus on
compression ratios.

• Third, we, via simple lightweight compression techniques, improve the asymptotic
behavior of linear algebra operations, and in turn algorithms, by exploiting compressed
operations that maximize the reuse of compressed index structures.

6.3 Future Work
New column groups: There is a potential in developing new column groups exploiting
the techniques proposed in TOC [147] and GLA [77]. The new groups should be modified
techniques that support fused FOR compression and overlapping states similar to AWARE [23].
Both techniques can be modified for these additional functionalities. However, one limitation to
overcome is these schemes rely on compressing both the row and column dimensions. Therefore,
in the column group setting of AWARE, they would only apply in cases where we co-code
many columns. If it works, we should see performance improvements where column groups’
performance could scale in the number of grammar rules [77] or LZW entries [147], which
is lower than number of distinct tuples many operations in AWARE. Another interesting
direction for compressed processing is via functional approximations [169], where operations
can be pushed into the function definitions of the compressed format. In a simple example,
a polynomial function could approximate the column values. Then, when performing RMM,
instead of decompressing, the result would be a modified polynomial function.

Image Augmentations: Another direction of future work is modality-specific augmen-
tation. The contributions in BWARE focused on tabular transformations and non-linear
transformations, both crucial components in data-centric ML pipelines. However, missing
is image augmentation. Affine transformations performing linear transformations of images
have potential in compressed linear algebra. Coincidentally, affine transformations can be
performed via an RMM and vector addition, resulting in a compressed input and output from
transformations. Furthermore, depending on the interpolation algorithm selected [84], the
output of the RMM can be non-overlapping because each column output only contains values
from one input column group.

Learned Quantization: Actively making intermediates compressible via, for instance,
learning quantization parameters while fitting neural networks. Wiedemann et al. [241] showed
that compressing layers on quantized and pruned networks has high compression potential while
only leveraging an OLE-like compression scheme. Turning the objective around and instead
fitting a model while integrating the compressibility and compressed inference performance in
the loss function potentially reduces the cost of neural network operations.

Compressed SIMD Linear Algebra: We developed the compression framework with
limited to no exploitation of SIMD. However, vectorized operations directly on the compressed
representation have potential. Even with the partially random access patterns from the
indirections of the index structures of the compression schemes, SIMD applies via gather and
scatter operations. These would apply to DDC, SDC, CONST, RLE, OLE, and FOR groups.
Unfortunately, vectorized operations do not apply to GLA and TOC-like techniques without
modifications because of the sequential iteration and exploitation of rule sequences.
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Hardware Acceleration: Further reducing the execution time we could move the
computation of compressed linear algebra to hardware accelerators, such as GPUs. A limitation
of moving the implementation to GPU-based execution is the irregularity of the compressed
formats, where many differently encoded groups pose a problem. Therefore, a GPU-based
implementation of AWARE would have to consider other parameters, such as compression
variety, in the workload-aware planning and compression. However, a good reason for hardware-
accelerated CLA is that many operations use standard linear algebra instruction types.
Additionally, there is no branching behavior in most of the compressed linear algebra operations,
and each cell has to be processed similarly. For instance, compressed matrix multiplications
contain pre-aggregation followed by normal matrix multiplication, both computations that
would fit on GPU devices.

Computational Storage: In the same direction of hardware specialization, BWARE
contained some I/O specialization. However, there is more potential in the storage direction
leveraging computational storage [144, 106]. For instance, the compression decisions and
operation of data can be pushed down to the storage device itself. Computational storage
would enable dynamic refinement of the stored format subject to workload characteristics.
Rarely used data could, for instance, be heavily compressed, while commonly used data would
be readily available. Furthermore, with this adaptive approach, we could co-design the stored
format with linear algebra instruction primitives that could be executed while reading the
data into system memory.

Streaming Use Cases: The contributions in this thesis focus on full dataset compression
to allow exploiting the redundancy of entire columns. TOC [147] targeted the mini-batch use
case by compressing individual batches of data. Similar to TOC, there is potential in exploring
more compressed linear algebra on streaming data collections [98]. Future work includes
redundancy-exploitation of continuous streams of data batches and operations increasing
redundancy while processing, such as feature transformations.

While this thesis demonstrates the potential of workload-aware compression, it serves as a
foundation for expanding the application of workload-aware compressed linear algebra to a
wide range of high-impact future applications.
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A
A.1 Arithmetic Encoding

If we have three distinct values: x, y, and z, each with an equal probability of 0.3, then an
optimal encoding, according to Shannon theorem [211], would use 1.58 bits per value, which is
close to possible with arithmetic coding. Arithmetic encoding compresses data by using the
frequencies of distinct values (plus an ’end’ value) associating with a relatively sized fraction
in the range [0, 1]. e.g., if the frequency is equal for x y and z, x = [0, 0.3), y = [0.3, 0.6),
z = [0.6, 0.9) and end = [0.9, 1]. Encoding the sequence "x x y z end" recursively applies the
fractional range as shown in A.1.

x→ [0, 0.3)
x→ [0, 0.09) =[0,0.3·0.3)
y → [0.027, 0.054) =[0.+0.09·0.3,0.09·0.6)
z → [0.0432, 0.0513) =[0.027+(0.054−0.027)·0.6,0.054−(0.054−0.027)·(1−0.9))
end→ [0.05049, 0.0513) =[0.0432+(0.0513−0.0432)·0.9,0.0513)

(A.1)

Any value in the range encodes the sequence, and we can decode the value via recursive
lookups and modification of intermediate ranges. For instance, choosing 0.051 as the encoded
value decompress as shown in A.2.

0.051 ∈ [0, 0.3) → 0.051/0.3 = 0.169 → x
0.169 ∈ [0, 0.3) → 0.169/0.3 = 0.56 → x
0.56 ∈ [0.3, 0.6) → (0.56− 0.3)/0.3 = 0.7962 → y
0.8 ∈ [0.6, 0.9) → (0.7962− 0.6)/0.3 = 0.962 → z
0.962 ∈ [0.9, 1] → end

(A.2)
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The following is a basic example of Arithmetic encoding. Note that for it to work on longer
sequences, the floating points must use infinite precision (which is not the case in the example).
import random

a = [0, 0.3, 0.6, 0.9, 1] # Probability distribution
tokens = [0 ,0 ,1 ,2 ,3] # Values to compress

range = [0.0 , 1.0] # Valid compression range
for e in tokens : # encode

diff = range [1] - range [0]
range = [range [0] + diff * a[e],

range [1] - diff * (1 - a[e+1])]

# compressed value
r = random . random () * (range [1]- range [0]) + range [0]

while r < a[ -2]: # decode
id = 0
while a[id] < r: id += 1
# min -max normalization
r = (r - a[id -1]) / (a[id] - a[id -1])
print(id -1, end=" ")
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A.2 Sparse Operations Analysis
To properly analyze the operational cost of sparse linear algebra operations past big-O notations,
we need to split the cost up into different elements.

1. Operation execution: How much does a single operation cost?

2. Index lookups: How much indirection via index calculation?

3. Cache efficiency: How many bytes do we load per operation?

This cost-breakdown is a simplified view since it is missing parallelization, blocking, and
multi-level cache hierarchy are influential factors for accurate estimates.

Sum
Starting with a sum operation on a matrix, a dense row or column major implementation
would look something like
public static double sum( double [] a){

double r = 0; // O(1)
for(int i = 0; i < a. length ; i++) // O(A)

r += a[i];
return r;

}

Dense Sum: The O(A) = O(nm) is consistent with the initial table Table 2.1. The
Operation cost is once per value via addition into the running sum. There are no index lookups
except directly into the row/col major array, and therefore, no indirections. Finally, the cache
efficiency is good, by sequentially loading all double values in the array. Each value fills 8
bytes, therefore we load 8 bytes per value processed. It is well known that this operation is
memory-bandwidth bound because we perform disproportionally little computation compared
to loading values.

Sparse Sum: A sparse COO, CSR, CSC implementation (see Figure 2.2), could call the
same method as the dense, except using only value arrays reducing the asymptotic execution
time to O(A̸=0). Index lookups and cache efficiency are similar, but the number of values
processed is reduced. Similar to dense, this operation is memory-bandwidth bound.

Row/Col Sum
To calculate row or column sums, we need additional information. Assuming a row-major
layout and calculating column sums, the dense operation becomes:
public static double [] colSum ( double [] a, int nCol){

double [] r = new double [nCol ]; // O(m)
for(int i = 0; i < a. length ; i++) // O(A)

r[i % nCol] += a[i];
return r;

}

Dense Row/Col Sum: To follow the cost decomposition, the operational cost is equivalent
to the full sum with the addition. However, for indexing, we have additionally to calculate
the output cell via modulo (row sum replace modulo with division), and we now potentially
load two double values per operation, one for the input and one for the output. Assuming
that the output number of columns is small, the overhead of loading the output cell is small,
while loading input cells from a is more expensive because they are not reused. Row sum and
column sum are both also memory-bandwidth bound. Therefore, assuming a small output
number of columns, the execution time is equivalent to a normal sum.
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Unlike the sparse sum, sparse row/col sum can use a trick:
public static double [] colSum (int [] cols , double [] a, int nCol){

double [] r = new double [nCol ]; // O(R)
for(int i = 0; i < a. length ; i++) // O(A_nnz)

r[cols[i]] += a[i];
return r;

}

Sparse Col Sum: Sparse column sum have O(R + A̸=0). The asymptotic R, is from
allocating the output vector. Both COO and CSR can loop through the non-zero value arrays
and use the column offset array to index into the right output cells. However, there is an
overhead in index lookups, that has an indirection in the column offset array that also offsets
into the result array. We have to load a double from the non-zero array, a double from
the output, and an integer from the column offset array, making each value processed more
expensive on the cache. Therefore, the cache overhead is increased to 20 bytes per value
processed. Similarly to dense, we can argue that the result vector can be reused if the output
is small and reduce the cache usage to 12 bytes per value processed. With these estimates, we
can theoretically say that a sparsity of < 0.6 is required before sparse column sums on CSR or
COO should begin to be as fast as dense. Depending on the order of the columns in CSR or
COO, the sparse implementation can be very cache-unfriendly via randomly shuffled indexes.
Therefore, it is preferred that the indexes are sorted.
public static double [] rowSumCSR (int [] rOff , double [] a,

int nRow){
double [] r = new double [nRow ]; // O(R)
for(int i = 0; i < rOff. length - 1; i++) // O(n + A_nnz)

for(int j = rOff[i]; i < rOff[i+1]; j++)
r[i] += a[j];

return r;
}

Sparse Row Sum: The CSR implementation diverges from the COO implementation
when calculating the row sum. However, both implementations follow O(R + n + A ̸=0), COO
can use the exact same method from column sum, except it should use the row offsets instead
of the column offsets for the first input. The changes for CSR make each row’s value range is
checked in an outer loop, and then in an inner loop, each individual row’s values are added
to the corresponding output cell. The CSR rowSum implementation is close to equivalent
in cache efficiency to dense with a slight overhead in loading two-row offset values per row
processed, while it also does not incur any significant index lookups. In practice, assuming
some values on each row, the CSR implementation is more efficient, while if the matrix is ultra
sparse with many empty rows, COO is better. Based on this analysis, CSR should be close to
equivalent in performance to dense even when A ̸=0 approaches A, with an overhead on many
rows, and speeds up linearly with reductions in non-zero values.
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Max
Dense Max: The dense max operation have the same behavior as sum, with a slight increase
in the operational cost. However, since it is still a memory bandwidth bound operation, it
should exhibit similar execution times to sum.
public static double max( double [] a){

double r = a[0]; // O(1)
for(int i = 1; i < a. length ; i++) // O(A)

r = a[i] > r ? a[i] : r;
return r;

}

Sparse Max: The sparse max, also behaves similarly to the sparse sum, with an small
change to the initial state handling if the number of non-zero values contained A ̸=0 is equal to
the number of cells A.
public static double max( double [] a, int nCol , int nRow){

double r = nCol * nRow > a. length ? 0 : a[0]; // O(1)
for(int i = 0; i < a. length ; i++) // O(A)

r = a[i] > r ? a[i] : r;
return r;

}

Row/Col Max
This section describe the binary operations Max, which also is applicable to other operations
such as Min with minor modifications.

Dense Row/Col Max: Dense row or column max is equivalent to the dense sum
(Appendix A.2), with minor modifications. The operational performance is also equivalent.

Calculating the maximum value in COO sparse formats can be done via the following code.
public static double [] colMaxCOO (int [] cols , double [] a, int

nCol ,
int nRow){

int [] counts = new int[nCol ]; // O(R)
for(int i = 0; i < a. length ; i++) // nnz col count O(A_nnz)

counts [cols[i]]++;
double [] r = new double [nCol ]; // O(R)
for(int i = 0; i < nCol; i++) // initialize result O(R)

r[i] = counts [i] == nRow ? Double . MIN_VALUE : 0;
for(int i = 0; i < a. length ; i++) // process O(A_nnz)

r[cols[i]] = a[i] > r[cols[i]] ? a[i] : r[i];
return r;

}

Sparse Row/Col Max: Because it is unknown which columns contain zero values, the
sparse algorithm requires extra processing. The example above uses a two-pass algorithm for
COO that first counts non-zeros in columns, followed by an initialization of the result vector.
After the preprocessing, we can iterate through the column indexes and values. Overall, this
implementation requires a two-pass over the number of non-zero, and additionally, we allocate
both an integer array and a double array. In C++, it would be possible to reuse the allocation
by, for instance, using long counts and recasting the long array to an output of doubles. The
first loop to count is more cache efficient, loading 8 bytes per processed value, while the final
loop loads 20.
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Calculating the row max on a CSR allows skipping the counting since the row offsets
implicitly contain the number of non-zero values of rows. CSR simplifies the algorithm to:
public static double [] rowMaxCSR (int [] rOff , int [] cols ,

double [] a, int nCol , int nRow){
double [] r = new double [nRow ]; // O(n)
for(int i = 0; i < rOff. length - 1; i++){ // O(n + A_nnz)

int s = rOff[i];
int e = rOff[i+1];
r[i] = e - s == nCol ? Double . MIN_VALUE : 0;
for(int j = s; j < e; j++)

r[i] = a[j] > r[i] ? a[j] : r[i];
}
return r;

}

O(n + A̸=0) is still the same. However, the CSR implementation only requires a single
pass over the data. We still note that the number of non-zeros can be vastly bigger than the
number of rows.

Sparse Unsafe (A + M)
The sparse unsafe operations typically return dense outputs. Therefore, the asymptotic runtime
is dictated by the output dimension O(A).

Binary Sparse Safe (A · M)
Sparse safe operations on the other hand can be optimized. If the other input is a scalar, vector,
or matrix, does not change the asymptotic runtime but it does lower the cache efficiency.
public static double [] mult( double [] a, double [] b){

double [] ret = new double [a. length ]; // O(A)
for(int i = 0; i < a. length ; i++) // O(A)

ret[i] = a[i] * b[i];
return ret;

}

Dense: The dense example above assume both input matrices are linearized similarly (row
or column). If this is true, it loops though the inputs and assign a new output. The operation
is memory bandwidth bound, and loads 24 bytes per iteration of the for loop.
public static COO multCOO (int [] rows , int [] cols ,

double [] a, double [] b, int nCol){
double [] ret = new double [a. length ]; // O(A_nnz)
int nnz = 0;
for(int i = 0; i < a. length ; i++) // O(A_nnz)

nnz += (ret[i] = a[i] * b[rows[i] * nCol + cols[i]])
== 0 ? 0 : 1;

if(nnz < a. length ) // compact
return compactCOO (rows , cols , ret , nnz); // O(A_nnz)

return new COO(rows , cols , ret);
}

Sparse COO: Assuming the input matrix is row-major linearized into b, and the row and
column indexes are immutable for COO. Then the COO execution time can scale in number
of non zeros O(A ̸=0), as shown in the above code. The COO version loads 8 more bytes per
value processed in the inner loop, making it 32 bytes per value processed. Since it is possible
for b to contain zero values, the resulting COO can be postprocessed (O(A̸=0)) in a second
pass if the output contains less non-zero values.
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public static CSR multCSR (int [] rOff , int [] cols ,
double [] a, double [] b, int nCol){

double [] ret = new double [a. length ]; // O(A_nnz)
int nnz = 0;
for(int i = 0; i < rOff. length - 1; i++){ // O(n + A_nnz)

int s = rOff[i];
int e = rOff[i+1];
int off = i * nCol; // precompute row offset
for(int j = s; j < e; j++)

ret[j] = a[j] * b[off + cols[j]];
}
if(nnz < a. length ) // compact

return compactCSR (rOff , cols , ret , nnz); // O(n + A_nnz)
return new CSR(rOff , cols , ret);

}

Sparse CSR: The sparse CSR comes with two advantages. First, the inner loop processing
reduce the number of loaded bytes by 4, to 28 per value processed. Second, that we guarantee
accessing b in a consistent pattern for each row. However, CSR has a disadvantage if many
rows are empty, because it forces iteration though the row offsets. Similar to COO, CSR can
postprocess the output if the number of non-zero values is reduced.

Matrix Multiplication (A@M)
This section describe the matrix multiplication baselines in dense and sparse versions. It is a
simplification of actual implementations that further optimize via cache blocking of inputs,
and vectorized kernels for efficient processing of ranges.
public static double [] mm( double [] a, double [] b,

int rowA , int colB){
double [] ret = new double [rowA * colB ]; // O(nk)
int cd = a. length / rowA; // common dimension
for(int i = 0; i < rowA; i++){ // O(nmk)

int offO = i * colB;
int offA = i * cd;
for(int k = 0; k < cd; k++, offA ++){

int offB = k * colB;
double av = a[offA ];
for(int j = offO; j < offO + colB; j++, offB ++)

ret[j] += av * b[offB ];
}

}
return ret;

}

Dense: A simplified dense matrix multiplication without vectorization or cache blocking
of two row-major inputs could be implemented, as shown above. Notably, each multiplication
performed in the inner loop loads 16 bytes. However, unlike the previous operations, matrix
multiply is not memory bandwidth bound. Instead, it is compute bound because many of
the values loaded are reused for multiple computations [94, 29]. The cache reuse potential
is optimal when multiplying small square blocks that, together with the program, fit in the
lowest level of cache [94].
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public static double [] mmCOO(int [] rows , int [] cols , double [] a,
double [] b, int rowA , int colB){

double [] ret = new double [rowA * colB ]; // O(nk)
for(int i = 0; i < a. length ; i++){ // O(A_nnz k)

double aV = a[i];
int offO = rows[i] * colB;
int offB = cols[i] * colB;
for(int j = offO; j < offO + colB; j++, offB ++)

ret[j] += aV * b[offB ];
}
return ret;

}

Sparse COO: COO sparse matrix multiplication with a dense matrix asymptotically
costs O(nk + ∑︁n

i=1 Ai, ̸=0k). Where nk is the allocation of the output, that could dominate
in ultra sparse cases, and the matrix multiplication itself scaling in nnz cells. Assuming the
coordinates are sorted row-major, and the output similarly is row-major, the cache efficiency is
decent, with the outer loop loading 16 bytes per non zero value. The inner loop does not load
many values with 16 bytes per loop iteration, of which both the result cell and the dense input
cell could be reused from cache often. Therefore, if the input is sparse COO based matrix
multiplication should be faster.
public static double [] mmCSR(int [] rowOff , int [] cols ,

double [] a, double [] b, int rowA , int colB){
double [] ret = new double [rowA * colB ]; // O(nk)
for(int i = 0; i < rowOff .length -1; i++){ // O(A_nnz k + n)

int offO = i * colB;
for(int j = rowOff [i]; j < rowOff [i+1];j++){

double aV = a[j];
int offB = cols[j] * colB;
for(int k = offO; k < offO + colB; k++, offB ++)

ret[k] += aV * b[offB ];
}

}
return ret;

}

Sparse CSR: The CSR right matrix multiplication adds a the extra loop, similar to
other operations, that adds an asymptotic cost for each row processed. However, it does allow
reducing the offset calculation from every cell, to once per row. The rest of the behavior is
similar to COO. Therefore, CSR is slightly better once a non trivial number of non-zeros are
contained in the input.

Other Input Sparse: If both input matrices are sparse, then the innermost for loop
can be optimized to only process non-zero elements of the individual rows. Further reducing
execution time. To support this behavior with COO, it is ideal if the cells are sorted row-major,
to allow a binary search to find row boundaries. If CSR, the row offsets, suffice to find non-zero
values making it constant time lookups.

Sparse Outputs: In most cases the matrix multiplication produce a dense output with
many non-zero values. However, some cases where the input matrices are ultra sparse, and
contain full zero rows on the left matrix or columns on the right, produce sparse results.
Therefore, specializations for this case is also beneficial.
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Transpose Self Matrix Multiply (At@A)
The final example operation is transpose self matrix multiplication (TSMM) that, without
materializing the transposed version of itself does the multiplication.
public static double [] tsmm( double [] a, int nRow , int nCol) {

double [] ret = new double [nCol * nCol ]; // O(m^2)
for(int i = 0; i < nCol; i++) { // O(nm ^2)

int offO = i * nCol;
for(int j = 0; j < nRow; j++) {

int offB = j * nCol;
double aV = a[offB + i];
// skip based on column processed
offB = offB + i;
for(int k = offO + i; k < offO + nCol; k++, offB ++)

ret[k] += aV * a[offB ];
}

}
copyUpperHalf (ret , nCol); // O(m^2)
return ret;

}

Dense: The above code shows a version of dense tsmm. The above implementation
does not apply cache blocking, which is critical for improved performance. However, the
implementation does show the correct asymptotic behavior. Importantly, for TSMM, we can
suffice with calculating the top half of the result and copy it to the bottom half because the
result is a symmetric matrix.
public static double [] tsmmCSR (int [] rowOff , int [] cols ,

double [] a, int nCol) {
final double [] ret = new double [nCol * nCol ]; // O(m^2)
for(int i = 0; i < rowOff . length - 1; i++) { // O(... + n)

final int s = rowOff [i];
for(int j = s; j < rowOff [i + 1]; j++) { // O(sum(r_nnz ^2))

final double aV = a[j];
final int col = cols[j] * nCol;
// Start from j to only calculate upper half
for(int k = j; k < e; k++) { // O(sum(r_nnz))

ret[cols[k] + col] += aV * a[k];
}

}
}
copyUpperHalf (ret , nCol);
return ret;

}

Sparse: Above is a sparse CSR-based transpose self-multiplication. Similar to the dense
version, the sparse TSMM calculates only half of the output (seen in the last inner for
loop) and copies the result to the other half. In ultra-sparse cases, the output allocation of
O(m2) dominates the execution time. However, more commonly it is the number of non-zeros
O(∑︁n

i=1(Ai, ̸=0)2). However, if n is large, m is small, and the number of non zero values is low,
then the number of rows become the dominating factor for CSR O(n), while, COO does not
suffer from this constant factor.
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A.3 CSR-VI Operations Analysis

Vector Multiplication
While the asymptotic runtime does not improve for vector multiplication in CSR-VI, it does
improve the cache efficiency if the number of distinct values is low. Vector multiplications
are memory bandwidth bound typically. The following code is the CSR baseline for vector
multiplication:
public static double [] mvCSR(int [] rowOff , int [] cols ,

double [] a, double [] b, int rowA){
double [] ret = new double [rowA ]; // O(nk)
for(int i = 0; i < rowOff .length -1; i++){ // O(A_nnz + n)

double t = 0.0;
for(int j = rowOff [i]; j < rowOff [i+1];j++)

t += a[j] * b[cols[j]];
ret[i] += t;

}
return ret;

}

CSR baseline: We can see the inner loop have to load two doubles, one from the csr
value array a and one from b. Furthermore, we need to load the column index, to indicate
which value in b to multiply with. The ret cell is reused for the entire inner loop, therefore
cached, while the other two are respectively accessed in sequence (on a) and somewhat at
random (on b). In total, an estimate is we load 20 bytes per iteration of th inner loop.
public static double [] mvCSRVI (int [] rowOff , int [] cols ,

int [] m, double [] d, double [] b, int rowA){
double [] ret = new double [rowA ]; // O(nk)
for(int i = 0; i < rowOff .length -1; i++){ // O(A_nnz + n)

double t = 0.0;
for(int j = rowOff [i]; j < rowOff [i+1];j++)

t += d[m[j]] * b[cols[j]];
ret[i] += t;

}
return ret;

}

CSR-VI: The CSR-VI implementation adds an indirection in the inner loop that via a
mapping, m, looks up the distinct values in d. If the number of distinct values is small, we can
assume that the entire d is loaded in cache, thereby reducing the loaded bytes to 16 per inner
iteration in the example. If the mapping is allocated in smaller formats with #B < 32 as in
the example the loaded values can be further reduced. For instance with two distinct values to
12bytes and 1 bit per inner iteration. The reduction in loaded values gives performance gains
because the operation is memory bandwidth bound.
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A.4 Kernel Function Example

Let a and b be points in two-dimensional space (a, b ∈ R2), where a = [a1, a2] and b = [b1, b2].
We need to prove the kernel function of the feature map:

φ(a) = φ([a1, a2]) = [a1, a2, a2
1 + a2

2]

Is equal to:

k(a, b) = a⊤b + ||a||2||b||2

The definition of a kernel function is:

k(a, b) = ⟨φ(a), φ(b)⟩
Therefore, after substitutions, the function simplifies accordingly:

k(a, b) = ⟨φ(a), φ(b)⟩
= φ(a)⊤φ(b)
= φ([a1, a2])⊤φ([b1, b2])
= [a1, a2, a2

1 + a2
2]⊤[b1, b2, b2

1 + b2
2]

= a1b1 + a2b2 + (a2
1 + a2

2)(b2
1 + b2

2)
= [a1, a2]⊤[b1, b2] + (a2

1 + a2
2)(b2

1 + b2
2)

= a⊤b + (a2
1 + a2

2)(b2
1 + b2

2)

= a⊤b +
(︃√︂

(a2
1 + a2

2)
)︃2
·
(︃√︂

(b2
1 + b2

2)
)︃2

= a⊤b + ||a||2||b||2
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